Anisotropic inversion of seismic data for stressed media: Theory and a physical modeling study on Berea Sandstone

Author:

Sarkar Debashish1,Bakulin Andrey2,Kranz Robert L.1

Affiliation:

1. Colorado School of Mines, Department of Geophysics, Golden, Colorado 80401‐1887. Emails:

2. Formerly Schlumberger Cambridge Research, High Cross, Madingley Road, Cambridge, CB3 0EL, England; presently Shell International Exploration and Production, Post Office Box 481, Houston, Texas 77001‐0481.

Abstract

Nonhydrostatic stress, an often‐ignored source of seismic anisotropy, is universally present in the subsurface and may be as common as intrinsic or fracture‐induced anisotropy. Nonhydrostatic stress, applied to an initially transversely isotropic solid with vertical symmetry axis (VTI), results in an effective medium having almost orthorhombic symmetry (provided that one of the principal stresses is aligned with the symmetry axis). The symmetry planes observed in this orthorhombic medium are aligned with the orientations of the principal stresses, and anisotropic parameters (ε(1,2), δ(1,2,3), and γ(1,2)) can reveal information about the stress magnitudes. Thus, time‐lapse monitoring of changes in anisotropy potentially can provide information on temporal variations in the stress field.We use nonlinear elasticity theory to relate the anisotropic parameters to the magnitudes of the principal stresses and verify these relationships in a physical modeling study. Under the assumption of weak background and stress‐induced anisotropy, each effective anisotropic parameter reduces to the sum of the corresponding Thomsen parameter for the unstressed VTI background and the corresponding parameter associated with the nonhydrostatic stress. The stress‐related anisotropic parameters depend only on the differences between the magnitudes of principal stresses; therefore, principal stresses can influence anisotropic parameters only if their magnitudes differ in the symmetry plane in which the anisotropic parameters are defined.We test these predictions on a physical modeling data set acquired on a block of Berea Sandstone exhibiting intrinsic VTI anisotropy. Uniaxial stress, applied normal to the VTI symmetry axis, i.e., horizontally, produces an effective medium that is close to orthorhombic. We use two different methods to estimate the anisotropic parameters and study their variation as a function of stress. The first method utilizes conventional measurements of transmission velocities along the principal axes of the sample. The second method uses PP and PS reflection data acquired along seven different azimuths on the surface of the block.In accordance with theoretical predictions, the anisotropic parameters in the vertical plane normal to the stress are almost insensitive to the magnitude of the stress. In contrast, anisotropic parameters in the vertical plane of the applied stress increase approximately in a linear fashion with increasing stress. Except for the parameter δ(1), comparison of the measured values of anisotropic parameters with theoretical predictions shows satisfactory agreement.Despite some documented discrepancies, we believe that nonlinear elasticity may provide a suitable framework for estimating pore pressure and 3D stresses from seismic data.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3