On the possibility of using suspension-log data to estimate historic overburden in shallow unconsolidated sediments

Author:

Wyatt Douglas1,Waddell Michael2

Affiliation:

1. University of South Carolina-Aiken

2. University of South Carolina Earth Science and Resources Institute

Abstract

Suspension-log data are typically used for engineering and seismic studies in shallow unconsolidated sediments. At the USDOE Savannah River Site, suspension data were acquired in a series of deep boreholes (up to ∼400 m) to support high-resolution geological and geophysical investigations in the Upper Atlantic Coastal Plain. Although regional coastal plain stratigraphy is historically inferred from core, seismic, and log data, it became apparent that both major and minor unconformities and possibly formation contacts in the unconsolidated sediments of the Upper Atlantic Coastal Plain were strongly correlated to distinct variations in suspension data that translated from the deep to very shallow horizons. Overall, the suspension data contained more information (character) than typical wireline sonic logs, most likely because wireline logs are optimized for consolidated sediments (shales, sandstones, carbonates) while the suspension log is more optimized for unconsolidated sediments. Most coastal plain wireline-log stratigraphic correlations are based on gamma and resistivity data that often do not show much character in the freshwater-saturated sediments and correlations from paleontological and palynological analyses are often difficult because of the scarcity and oxidation of fossils. However, because of the correlation of suspension data with high-resolution near-surface engineering data from direct push, core samples, and shallow geophysics, it was noticed that it might be possible to correlate a deep regional engineering stratigraphy using the assumptions that coastal deposition proceeded to a zero stress level (i.e., subaqueous or subaerial exposure), that remnant burial stresses remain in deeper sediments, and that the Poisson's ratio determined from the P and SH data captured the remnant stress history. To explore this possibility, suspension-log data were correlated to stratigraphic horizons from geophysical, wireline, and direct push data. Correlated intervals were then analyzed using simple best-fit regression curves extrapolated to a value where the Poisson's ratio intersected a value for surface sediments (zero overburden) based on literature data. Initial results indicated that for some intervals an interpreted depth of historic overburden was reasonable. Overall results were mixed, but intriguing, suggesting that this technique might have value in estimating historic overburden and in providing better stratigraphic correlations. However, a better understanding of the suspension stratigraphic correlation and possibly a better model are needed.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3