Poroacoustoelasticity for rocks with a dual-pore structure

Author:

Ling Wenchang1ORCID,Ba Jing1ORCID,Carcione José M.2,Zhang Lin1

Affiliation:

1. Hohai University, School of Earth Sciences and Engineering, Nanjing 211100, China.(corresponding author); .

2. Hohai University, School of Earth Sciences and Engineering, Nanjing 211100, China and Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42c, Sgonico, Trieste 34010, Italy..

Abstract

Acoustoelasticity describes the interaction of acoustic waves with nonlinear elastic deformations, particularly the change of wave velocity due to initial stresses or strains in a predeformed body. The theory extends the strain energy to cubic terms (third-order elasticity) and allows for finite strains to model deformations at high confining pressures. However, the theory considers equant (stiff) pores but neglects the effects of soft (compliant) pores, such as microfractures, cracks, and grain contacts. Our main contribution is to include these effects. Application of the novel poroacoustoelasticity theory to ultrasonic measurements on carbonate samples at varying confining pressures provides a better fit for the measured data of pressure dependence of wave velocity. We have quantified the contribution of the compliant pores to the nonlinear behavior of the wave velocity and determined the relation between the threshold pressure (beyond which the theories with and without compliant pores yield the same velocity) and porosity and permeability. The extension of poroacoustoelasticity theory by incorporating a dual-pore structure provides better description for stress dependence of wave velocity in fluid-saturated heterogeneous rocks, which can be applicable in further field studies regarding reservoir characterization and in situ stress estimation.

Funder

National Natural Science Foundation of China

Jiangsu Innovation and Entrepreneurship Plan

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3