Frequency-domain wave-equation traveltime inversion with a monofrequency component

Author:

Wang Jianhua1ORCID,Yang Jizhong2ORCID,Dong Liangguo1,Liu Yuzhu2ORCID

Affiliation:

1. Tongji University, School of Ocean and Earth Science, Shanghai 200092, China.(corresponding author).

2. Tongji University, State Key Laboratory of Marine Geology, Shanghai 200092, China.(corresponding author).

Abstract

Wave-equation traveltime inversion (WTI) is a useful tool for background velocity model building. It is generally formulated and implemented in the time domain, in which the gradient is calculated by temporally crosscorrelating the source- and receiver-side wavefields. The time-domain source-side snapshots are either stored in memory or are reconstructed through back propagation. The memory requirements and computational cost of WTI are thus prohibitively expensive, especially for 3D applications. To partially alleviate this problem, we provide an implementation of WTI in the frequency domain with a monofrequency component. Because only one frequency is used, it is affordable to directly store the source- and receiver-side wavefields in memory. There is no need for wavefield reconstruction during gradient calculation. In such a way, we have dramatically reduced the memory requirements and computational cost compared with the traditional time-domain WTI realization. For practical implementation, the frequency-domain wavefield is calculated by time-domain finite-difference forward modeling and is transformed to the frequency domain by an on-the-fly discrete Fourier transform. Numerical examples on a simple lateral periodic velocity model and the Marmousi model demonstrate that our method can obtain accurate background velocity models comparable with those from time-domain WTI and frequency-domain WTI with multiple frequencies. A field data set test indicates that our method obtains a background velocity model that well predicts the seismic wave traveltime.

Funder

Fundamental Research Funds for the Central Universities

The National Natural Science Foundation of China

The National Key R&D Program of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3