Eulerian partial-differential-equation methods for complex-valued eikonals in attenuating media

Author:

Hu Jiangtao1ORCID,Qian Jianliang2ORCID,Song Jian2,Ouyang Min3,Cao Junxing1,Leung Shingyu4ORCID

Affiliation:

1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Chengdu University of Technology), No. 1, Dongsanlu, Erxianqiao, Chengdu 610059, China.(corresponding auhtor); .

2. Michigan State University, Department of Mathematics and Department of CMSE, East Lansing, Michigan 48824, USA..

3. Zhanjiang Branch of CNOOC Limited, Zhanjiang 524000, China..

4. Hong Kong University of Science and Technology, Department of Mathematics, Hong Kong SAR 999077, China..

Abstract

Seismic waves in earth media usually undergo attenuation, causing energy losses and phase distortions. In the regime of high-frequency asymptotics, a complex-valued eikonal is an essential ingredient for describing wave propagation in attenuating media, where the real and imaginary parts of the eikonal function capture dispersion effects and amplitude attenuation of seismic waves, respectively. Conventionally, such a complex-valued eikonal is mainly computed either by tracing rays exactly in complex space or by tracing rays approximately in real space so that the resulting eikonal is distributed irregularly in real space. However, seismic data processing methods, such as prestack depth migration and tomography, usually require uniformly distributed complex-valued eikonals. Therefore, we have developed a unified framework to Eulerianize several popular approximate real-space ray-tracing methods for complex-valued eikonals so that the real and imaginary parts of the eikonal function satisfy the classic real-space eikonal equation and a novel real-space advection equation, respectively, and we dub the resulting method the Eulerian partial-differential-equation method. We further develop highly efficient high-order methods to solve these two equations by using the factorization idea and the Lax-Friedrichs weighted essentially nonoscillatory schemes. Numerical examples demonstrate that our method yields highly accurate complex-valued eikonals, analogous to those from ray-tracing methods. Our methods can be useful for migration and tomography in attenuating media.

Funder

National Science Foundation

Hong Kong RGC

National Natural Science Foundation of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3