Improved hydrogeophysical imaging by structural coupling of 2D magnetic resonance and electrical resistivity tomography

Author:

Skibbe Nico1ORCID,Günther Thomas1ORCID,Müller-Petke Mike1ORCID

Affiliation:

1. Leibniz Institute for Applied Geophysics, Stilleweg 2, Hannover 30655, Germany.(corresponding author); .

Abstract

Describing hydraulic properties in the subsurface in at least two dimensions is one of the main objectives in hydrogeophysics. However, due to the limited resolution and ambiguity of the individual methods, those images are often blurry. We have developed a methodology to combine two measuring methods, magnetic resonance tomography (MRT) and electrical resistivity tomography (ERT). To this end, we extend a structurally coupled cooperative inversion scheme to three parameters. It results in clearer images of the three main parameters: water content, relaxation time, and electrical resistivity; thus, there is a less ambiguous hydrogeophysical interpretation. Synthetic models demonstrate its effectiveness and show how the parameters of the coupling equation affect the images and how they can be chosen. Furthermore, we examine the influence of resistivity structures on the MRT kernel function. We apply the method to a roll-along MRT data set and a detailed ERT profile. As a final result, a hydraulic conductivity image is produced. Known ground-penetrating radar reflectors act as the ground truth and demonstrate that the obtained images are improved by the structural coupling.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3