Affiliation:
1. Leibniz Institute for Applied Geophysics, Stilleweg 2, Hannover 30655, Germany.(corresponding author); .
Abstract
Describing hydraulic properties in the subsurface in at least two dimensions is one of the main objectives in hydrogeophysics. However, due to the limited resolution and ambiguity of the individual methods, those images are often blurry. We have developed a methodology to combine two measuring methods, magnetic resonance tomography (MRT) and electrical resistivity tomography (ERT). To this end, we extend a structurally coupled cooperative inversion scheme to three parameters. It results in clearer images of the three main parameters: water content, relaxation time, and electrical resistivity; thus, there is a less ambiguous hydrogeophysical interpretation. Synthetic models demonstrate its effectiveness and show how the parameters of the coupling equation affect the images and how they can be chosen. Furthermore, we examine the influence of resistivity structures on the MRT kernel function. We apply the method to a roll-along MRT data set and a detailed ERT profile. As a final result, a hydraulic conductivity image is produced. Known ground-penetrating radar reflectors act as the ground truth and demonstrate that the obtained images are improved by the structural coupling.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献