On efficient frequency-domain full-waveform inversion with extended search space

Author:

Aghamiry Hossein S.1ORCID,Gholami Ali2ORCID,Operto Stéphane1ORCID

Affiliation:

1. University Côte d’Azur – CNRS – IRD – OCA, Geoazur, Valbonne 06560, France.(corresponding author); .

2. University of Tehran, Institute of Geophysics, Tehran 141556466, Iran..

Abstract

Efficient frequency-domain full-waveform inversion (FD-FWI) of wide-aperture data is designed by limiting inversion to a few frequencies and by solving the Helmholtz equation with a direct solver to process multiple sources efficiently. Some variants of FD-FWI, which process the wave equation as a weak constraint, have been proposed to increase the computational efficiency or extend the search space. Among them, the contrast-source reconstruction inversion (CSRI) reparameterizes FD-FWI in terms of contrast sources (CS) and contrasts and updates them in an alternating mode. This reparameterization allows for one lower-upper (LU) decomposition of the Helmholtz operator to be performed per frequency inversion hence further improving the computational efficiency of FD-FWI. However, iteratively refined wavefield reconstruction inversion (IR-WRI) relies on the alternating-direction method of multipliers to extend the search space by matching the data from the early iterations via an aggressive relaxation of the wave equation while satisfying it at the convergence point thanks to the defect correction performed by the Lagrange multipliers. In contrast to CSRI, IR-WRI requires redoing one LU decomposition when the subsurface model is updated. In both methods, the CSs or the wavefields are computed by solving in a least-squares sense an overdetermined linear system gathering an observation equation and a wave equation. A drawback of CSRI is that CSs are estimated approximately with one iteration of a conjugate gradient method, whereas the wavefields are reconstructed exactly by IR-WRI with a Gauss-Newton method. We have combined the benefits of CSRI and IR-WRI to decrease the number of LU decomposition during IR-WRI with a fixed-point (FP) algorithm while preserving its search space extension capability. Application on the 2D complex Marmousi and the BP salt models shows that our FP-based IR-WRI manages to reconstruct these models as accurately as the classic IR-WRI while reducing the number of LU factorizations considerably. A theoretical complexity analysis and a recent application of 3D FD-FWI based upon direct solver suggest that the FP algorithm should reduce the cost of IR-WRI by a factor of approximately 2 and 10 for 3D dense ocean bottom cable and sparse ocean bottom node acquisitions, respectively.

Funder

GENCI

Wind consortium

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3