Rock-physics characterization of chalk by combining acoustic and electromagnetic properties

Author:

Yuan Hemin1ORCID,Looms Majken C.2,Nielsen Lars2ORCID

Affiliation:

1. China University of Geosciences (Beijing), School of Geophysics and Information Technology, Beijing 100083, China and University of Copenhagen, Department of Geosciences and Natural Resource Management, Copenhagen 1350, Denmark.(corresponding author).

2. University of Copenhagen, Department of Geosciences and Natural Resource Management, Copenhagen 1350, Denmark..

Abstract

The characterization of shallow subsurface formations is essential for geologic mapping and interpretation, reservoir characterization, and prospecting related to mining/quarrying. To analyze elastic and electromagnetic (EM) properties, we characterize near-surface chalk formations deposited on a shallow seabed during the Late Cretaceous-Early Paleogene (Maastrichtian-Danian). EM and elastic properties, both of which are related to mineralogy, porosity, and water saturation, are combined to characterize the physical properties of chalk formations. We also perform rock-physics modeling of elastic velocities and permittivity and analyze their relationships. We then use measured ground-penetrating radar and P-wave velocity field data to determine the key model parameters, which are essential for the validity of the models and can be used to evaluate the consolidation degree of the rocks. Based on the models, a scheme is developed to estimate the porosity and water saturation by combining the two rock-physics templates. The predictions are consistent with previous findings. Our templates facilitate fast mapping of near-surface porosity and saturation distributions and represent an efficient and cost-effective method for near-surface hydrologic, environmental, and petrophysical studies. In the current formulation, the method is only applicable to rock type (chalk) comprising a single mineral (pure calcite). It is possible to tailor the formulation to include more than one mineral; however, this will increase the uncertainty of the results.

Funder

National Natural Science Foundation of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3