An improved seismic data completion algorithm using low-rank tensor optimization: Cost reduction and optimal data orientation

Author:

Popa Jonathan1ORCID,Minkoff Susan E.1ORCID,Lou Yifei1

Affiliation:

1. The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, USA.(corresponding author); .

Abstract

Seismic data are often incomplete due to equipment malfunction, limited source and receiver placement at near and far offsets, and missing crossline data. Seismic data contain redundancies because they are repeatedly recorded over the same or adjacent subsurface regions, causing the data to have a low-rank structure. To recover missing data, one can organize the data into a multidimensional array or tensor and apply a tensor completion method. We can increase the effectiveness and efficiency of low-rank data reconstruction based on tensor singular value decomposition (tSVD) by analyzing the effect of tensor orientation and exploiting the conjugate symmetry of the multidimensional Fourier transform. In fact, these results can be generalized to any order tensor. Relating the singular values of the tSVD to those of a matrix leads to a simplified analysis, revealing that the most square orientation gives the best data structure for low-rank reconstruction. After the first step of the tSVD, a multidimensional Fourier transform, frontal slices of the tensor form conjugate pairs. For each pair, a singular value decomposition can be replaced with a much cheaper conjugate calculation, allowing for faster computation of the tSVD. Using conjugate symmetry in our improved tSVD algorithm reduces the runtime of the inner loop by 35%–50%. We consider synthetic and real seismic data sets from the Viking Graben Region and the Northwest Shelf of Australia arranged as high-dimensional tensors. We compare the tSVD-based reconstruction with traditional methods, projection onto convex sets and multichannel singular spectrum analysis, and we see that the tSVD-based method gives similar or better accuracy and is more efficient, converging with runtimes that are an order of magnitude faster than the traditional methods. In addition, we verify that the most square orientation improves recovery for these examples by 10%–20% compared with the other orientations.

Funder

UT Dallas "3D+4D Seismic FWI" research consortium sponsors

NSF CAREER Award

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Scale-Invariant Relaxation in Low-Rank Tensor Recovery with an Application to Tensor Completion;SIAM Journal on Imaging Sciences;2024-03-29

2. A low-rank tensor reconstruction and denoising method for enhancing CNN performance;2024 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI);2024-03-17

3. Design of Undersampled Seismic Acquisition Geometries via End-to-End Optimization;IEEE Transactions on Geoscience and Remote Sensing;2024

4. Low-Rank Tensor Data Reconstruction and Denoising via ADMM: Algorithm and Convergence Analysis;Journal of Scientific Computing;2023-10-07

5. Accelerated matrix completion algorithm using continuation strategy and randomized SVD;Journal of Computational and Applied Mathematics;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3