Memory-efficient source wavefield reconstruction and its application to 3D reverse time migration

Author:

Ren Zhiming1ORCID,Bao Qianzong1,Xu Shigang1

Affiliation:

1. Chang’an University, College of Geological Engineering and Geomatics, Xi’an 710064, China.(corresponding author); .

Abstract

Reverse time migration (RTM) generally uses the zero-lag crosscorrelation imaging condition, requiring the source and receiver wavefields to be known at the same time step. However, the receiver wavefield is calculated in time-reversed order, opposite to the order of the forward-propagated source wavefield. The inconvenience can be resolved by storing the source wavefield on a computer memory/disk or by reconstructing the source wavefield on the fly for multiplication with the receiver wavefield. The storage requirements for the former approach can be very large. Hence, we have followed the latter route and developed an efficient source wavefield reconstruction method. During forward propagation, the boundary wavefields at N layers of the spatial grid points and a linear combination of wavefields at [Formula: see text] layers of the spatial grid points are stored. During backward propagation, it reconstructs the source wavefield using the saved wavefields based on a new finite-difference stencil ( M is the operator length parameter, and [Formula: see text]). Unlike existing methods, our method allows a trade-off between accuracy and storage by adjusting N. A maximum-norm-based objective function is constructed to optimize the reconstruction coefficients based on the minimax approximation using the Remez exchange algorithm. Dispersion and stability analyses reveal that our method is more accurate and marginally less stable than the method that requires storage of a combination of boundary wavefields. Our method has been applied to 3D RTM on synthetic and field data. Numerical examples indicate that our method with [Formula: see text] can produce images that are close to those obtained using a conventional method of storing M layers of boundary wavefields. The memory usage of our method is [Formula: see text] times that of the conventional method.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities, CHD

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3