Minimality and uniqueness for decompositions of specific ternary forms

Author:

Angelini Elena,Chiantini Luca

Abstract

The paper deals with the computation of the rank and the identifiability of a specific ternary form. Often, one knows some short Waring decomposition of a given form, and the problem is to determine whether the decomposition is minimal and unique. We show how the analysis of the Hilbert-Burch matrix of the set of points representing the decomposition can solve this problem in the case of ternary forms. Moreover, when the decomposition is not unique, we show how the procedure of liaison can provide alternative, maybe shorter, decompositions. We give an explicit algorithm that tests our criterion of minimality for the case of ternary forms of degree 9 9 . This is the first numerical case in which a new phenomenon appears: the span of 18 18 general powers of linear forms contains points of (subgeneric) rank 18 18 , but it also contains points whose rank is 17 17 , due to the existence of a second shorter decomposition which is completely different from the given one.

Funder

Gruppo Nazionale per le Strutture Algebriche, Geometriche e le loro Applicazioni

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference34 articles.

1. Polynomial interpolation in several variables;Alexander, J.;J. Algebraic Geom.,1995

2. Identifiability of parameters in latent structure models with many observed variables;Allman, Elizabeth S.;Ann. Statist.,2009

3. Tensor decompositions for learning latent variable models;Anandkumar, Animashree;J. Mach. Learn. Res.,2014

4. On the identifiability of ternary forms;Angelini, Elena;Linear Algebra Appl.,2020

5. Identifiability beyond Kruskal’s bound for symmetric tensors of degree 4;Angelini, Elena;Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl.,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3