Enlargeable metrics on nonspin manifolds

Author:

Cecchini Simone,Schick Thomas

Abstract

We show that an enlargeable Riemannian metric on a (possibly nonspin) manifold cannot have uniformly positive scalar curvature. This extends a well-known result of Gromov and Lawson to the nonspin setting. We also prove that every noncompact manifold admits a nonenlargeable metric. In proving the first result, we use the main result of the recent paper by Schoen and Yau on minimal hypersurfaces to obstruct positive scalar curvature in arbitrary dimensions. More concretely, we use this to study nonzero degree maps f : X n S k × T n k f\colon X^n\rightarrow S^k\times T^{n-k} , with k = 1 , 2 , 3 k=1,2,3 . When X X is a closed oriented manifold endowed with a metric g g of positive scalar curvature and the map f f is (possibly area) contracting, we prove inequalities relating the lower bound of the scalar curvature of g g and the contracting factor of the map f f .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference17 articles.

1. The index of elliptic operators. I;Atiyah, M. F.;Ann. of Math. (2),1968

2. The singular sets of area minimizing rectifiable currents with codimension one and of area minimizing flat chains modulo two with arbitrary codimension;Federer, Herbert;Bull. Amer. Math. Soc.,1970

3. Stable mappings of foliations into manifolds;Gromov, M. L.;Izv. Akad. Nauk SSSR Ser. Mat.,1969

4. Metric inequalities with scalar curvature;Gromov, Misha;Geom. Funct. Anal.,2018

5. Spin and scalar curvature in the presence of a fundamental group. I;Gromov, Mikhael;Ann. of Math. (2),1980

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Llarull type theorems on complete manifolds with positive scalar curvature;Transactions of the American Mathematical Society;2024-07-17

2. Scalar and mean curvature comparison via $$\mu $$-bubbles;Calculus of Variations and Partial Differential Equations;2023-07-07

3. Positive scalar curvature on foliations: The noncompact case;Advances in Mathematics;2022-12

4. On the spectral sets of Inoue surfaces;Open Book Series;2022-10-27

5. Geography of 4-manifolds with positive scalar curvature;Expositiones Mathematicae;2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3