Non-Archimedean electrostatics

Author:

Sinclair Christopher

Abstract

We introduce ensembles of repelling charged particles restricted to a ball in a non-archimedean field (such as the p p -adic rational numbers) with interaction energy between pairs of particles proportional to the logarithm of the ( p p -adic) distance between them. In the canonical ensemble, a system of N N particles is put in contact with a heat bath at fixed inverse temperature β \beta and energy is allowed to flow between the system and the heat bath. Using standard axioms of statistical physics, the relative density of states is given by the β \beta power of the ( p p -adic) absolute value of the Vandermonde determinant in the locations of the particles. The partition function is the normalizing constant (as a function of β \beta ) of this ensemble, and we identify a recursion that allows this to be computed explicitly in finite time. Probabilities of interest, including the probabilities that fixed subsets will have a prescribed number of particles, and the conditional distribution of particles within a subset given a prescribed occupation number, are given explicitly in terms of the partition function. We then turn to the grand canonical ensemble where both the energy and number of particles are variable. We compute similar probabilities to those in the canonical ensemble and show how these probabilities can be given in terms the canonical and grand canonical partition functions. Finally, we briefly consider the multi-component ensemble where particles are allowed to take different integer charges, and we connect basic properties of this ensemble to the canonical and grand canonical ensembles.

Publisher

American Mathematical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. log-Coulomb Gases in the Projective Line of a $$p$$-Field;p-Adic Numbers, Ultrametric Analysis and Applications;2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3