Threshold approximations for the exponential of a factorized operator family with correctors taken into account

Author:

Suslina T.

Abstract

In a Hilbert space H \mathfrak H , consider a family of selfadjoint operators (a quadratic operator pencil) A ( t ) A(t) , t R t\in \mathbb {R} , of the form A ( t ) = X ( t ) X ( t ) A(t) = X(t)^* X(t) , where X ( t ) = X 0 + t X 1 X(t) = X_0 + t X_1 . It is assumed that the point λ 0 = 0 \lambda _0=0 is an isolated eigenvalue of finite multiplicity for the operator A ( 0 ) A(0) . Let F ( t ) F(t) be the spectral projection of the operator A ( t ) A(t) for the interval [ 0 , δ ] [0,\delta ] . Approximations for F ( t ) F(t) and A ( t ) F ( t ) A(t)F(t) for | t | t 0 |t| \leq t_0 (the so-called threshold approximations) are used to obtain approximations in the operator norm on H \mathfrak H for the operator exponential exp ( i τ A ( t ) ) \exp (-i \tau A(t)) , τ R \tau \in \mathbb {R} . The numbers δ \delta and t 0 t_0 are controlled explicitly. Next, the behavior for small ε > 0 \varepsilon >0 of the operator exp ( i ε 2 τ A ( t ) ) \exp (-i \varepsilon ^{-2} \tau A(t)) multiplied by the “smoothing factor” ε s ( t 2 + ε 2 ) s / 2 \varepsilon ^s (t^2 + \varepsilon ^2)^{-s/2} with a suitable s > 0 s>0 is studied. The obtained approximations are given in terms of the spectral characteristics of the operator A ( t ) A(t) near the lower edge of the spectrum. The results are aimed at application to homogenization of the Schrödinger-type equations with periodic rapidly oscillating coefficients.

Publisher

American Mathematical Society (AMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3