Failure of the well-rounded retract for outer space and Teichmüller space

Author:

Fortier Bourque Maxime

Abstract

The well-rounded retract for S L n ( Z ) SL_n(\mathbb {Z}) is defined as the set of flat tori of unit volume and dimension n n whose systoles generate a finite-index subgroup in homology. This set forms an equivariant spine of minimal dimension for the space of flat tori.

For both the Outer space X n X_n of metric graphs of rank n n and the Teichmüller space T g \mathcal {T}_g of closed hyperbolic surfaces of genus g g , we show that the literal analogue of the well-rounded retract does not contain an equivariant spine. We also prove that the sets of graphs whose systoles fill either topologically or geometrically (two analogues of a set proposed as a spine for T g \mathcal {T}_g by Thurston) are spines for X n X_n but that their dimension is larger than the virtual cohomological dimension of O u t ( F n ) Out(F_n) in general.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

American Mathematical Society (AMS)

Subject

Geometry and Topology,Discrete Mathematics and Combinatorics,Analysis,Algebra and Number Theory

Reference14 articles.

1. Deformation retracts with lowest possible dimension of arithmetic quotients of self-adjoint homogeneous cones;Ash, Avner;Math. Ann.,1977

2. [Bak11] O. Baker, The Jacobian map on Outer space, Ph.D. thesis, Cornell University, 2011.

3. Modern Birkh\"{a}user Classics;Buser, Peter,2010

4. Moduli of graphs and automorphisms of free groups;Culler, Marc;Invent. Math.,1986

5. Net structure and cages;Evans, C. W.;Discrete Math.,1979

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3