Weyl asymptotics for functional difference operators with power to quadratic exponential potential

Author:

Qiu Yaozhong

Abstract

We continue the program first initiated by Laptev, Schimmer, and Takhtajan [Geom. Funct. Anal. 26 (2016), pp. 288–305] and develop a modification of the technique introduced in that paper to study the spectral asymptotics, namely the Riesz means and eigenvalue counting functions, of functional difference operators H 0 = F 1 M cosh ( ξ ) F H_0 = \mathcal {F}^{-1} M_{\cosh (\xi )} \mathcal {F} with potentials of the form W ( x ) = | x | p e | x | β W(x) = \left \lvert {x} \right \rvert ^pe^{\left \lvert {x} \right \rvert ^\beta } for either β = 0 \beta = 0 and p > 0 p > 0 or β ( 0 , 2 ] \beta \in (0, 2] and p 0 p \geq 0 . We provide a new method for studying general potentials which includes the potentials studied by Laptev, Schimmer, and Takhtajan [Geom. Funct. Anal. 26 (2016), pp. 288–305] and [J. Math. Phys. 60 (2019), p. 103505]. The proof involves dilating the variance of the gaussian defining the coherent state transform in a controlled manner preserving the expected asymptotics.

Funder

Imperial College London

Publisher

American Mathematical Society (AMS)

Reference21 articles.

1. Topological strings and integrable hierarchies;Aganagic, Mina;Comm. Math. Phys.,2006

2. [DKB21] Charles F. Doran, Matt Kerr, and Soumya Sinha Babu, 𝑘_2 and quantum curves, Preprint, arXiv:2110.08482, 2021.

3. Liouville model on the lattice;Faddeev, L. D.,1986

4. A short proof of Weyl’s law for fractional differential operators;Geisinger, Leander;J. Math. Phys.,2014

5. Topological strings from quantum mechanics;Grassi, Alba;Ann. Henri Poincar\'{e},2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3