The speed of propagation for KPP type problems. II: General domains

Author:

Berestycki Henri,Hamel François,Nadirashvili Nikolai

Abstract

This paper is devoted to nonlinear propagation phenomena in general unbounded domains of R N \mathbb {R}^N , for reaction-diffusion equations with Kolmogorov-Petrovsky-Piskunov (KPP) type nonlinearities. This article is the second in a series of two and it is the follow-up of the paper The speed of propagation for KPP type problems. I - Periodic framework, by the authors, which dealt which the case of periodic domains. This paper is concerned with general domains, and we give various definitions of the spreading speeds at large times for solutions with compactly supported initial data. We study the relationships between these new notions and analyze their dependence on the geometry of the domain and on the initial condition. Some a priori bounds are proved for large classes of domains. The case of exterior domains is also discussed in detail. Lastly, some domains which are very thin at infinity and for which the spreading speeds are infinite are exhibited; the construction is based on some new heat kernel estimates in such domains.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal dispersal strategy for a stage-structured population model in discrete periodic habitat;Journal of Differential Equations;2024-08

2. Front propagation in both directions and coexistence of traveling fronts and pulses;Calculus of Variations and Partial Differential Equations;2023-05-05

3. Global Existence and Finite Time Blow-up for the m-Laplacian Parabolic Problem;Acta Mathematica Sinica, English Series;2023-04-25

4. Fisher–KPP equation on the Heisenberg group;Mathematische Nachrichten;2023-04-02

5. Determining spreading speeds for abstract time-periodic monotone semiflows;Journal of Differential Equations;2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3