Sieving by large integers and covering systems of congruences

Author:

Filaseta Michael,Ford Kevin,Konyagin Sergei,Pomerance Carl,Yu Gang

Abstract

An old question of Erdős asks if there exists, for each number N N , a finite set S S of integers greater than N N and residue classes r ( n )   ( mod   n ) r(n)~(\textrm {mod}~n) for n S n\in S whose union is Z \mathbb Z . We prove that if n S 1 / n \sum _{n\in S}1/n is bounded for such a covering of the integers, then the least member of S S is also bounded, thus confirming a conjecture of Erdős and Selfridge. We also prove a conjecture of Erdős and Graham, that, for each fixed number K > 1 K>1 , the complement in Z \mathbb Z of any union of residue classes r ( n )   ( mod   n ) r(n)~(\textrm {mod}~n) , for distinct n ( N , K N ] n\in (N,KN] , has density at least d K d_K for N N sufficiently large. Here d K d_K is a positive number depending only on K K . Either of these new results implies another conjecture of Erdős and Graham, that if S S is a finite set of moduli greater than N N , with a choice for residue classes r ( n )   ( mod   n ) r(n)~(\textrm {mod}~n) for n S n\in S which covers Z \mathbb Z , then the largest member of S S cannot be O ( N ) O(N) . We further obtain stronger forms of these results and establish other information, including an improvement of a related theorem of Haight.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference18 articles.

1. Wiley-Interscience Series in Discrete Mathematics and Optimization;Alon, Noga,2000

2. On weird and pseudoperfect numbers;Benkoski, S. J.;Math. Comp.,1974

3. E P. Erdős, A generalization of a theorem of Besicovitch, J. London Math. Soc. 11 (1936), 92–98.

4. On integers of the form 2^{𝑘}+𝑝 and some related problems;Erdös, P.;Summa Brasil. Math.,1950

5. Problems and results on combinatorial number theory;Erdős, P.,1973

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Erdős covering systems in global function fields;Journal of Number Theory;2025-01

2. On covering systems of polynomial rings over finite fields;Proceedings of the American Mathematical Society;2024-07-01

3. Erdős Covering Systems;Surveys in Combinatorics 2024;2024-06-13

4. Composite values of shifted exponentials;Advances in Mathematics;2023-09

5. The structure and number of Erdős covering systems;Journal of the European Mathematical Society;2023-06-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3