Wreath Macdonald polynomials, a survey

Author:

Orr Daniel,Shimozono Mark

Abstract

Wreath Macdonald polynomials arise from the geometry of Γ \Gamma -fixed loci of Hilbert schemes of points in the plane, where Γ \Gamma is a finite cyclic group of order r 1 r\ge 1 . For r = 1 r=1 , they recover the classical (modified) Macdonald symmetric functions through Haiman’s geometric realization of these functions. The existence, integrality, and positivity of wreath Macdonald polynomials for r > 1 r>1 was conjectured by Haiman and first proved in work of Bezrukavnikov and Finkelberg by means of an equivalence of derived categories. Despite the power of this approach, a lack of explicit tools providing direct access to wreath Macdonald polynomials—in the spirit of Macdonald’s original works—has limited progress in the subject.

A recent result of Wen provides a remarkable set of such tools, packaged in the representation theory of quantum toroidal algebras. In this article, we survey Wen’s result along with the basic theory of wreath Macdonald polynomials, including its geometric foundations and the role of bigraded reflection functors in the construction of wreath analogs of the \nabla operator. We also formulate new conjectures on the values of important constants arising in the theory of wreath Macdonald P P -polynomials. A variety of examples are used to illustrate these objects and constructions throughout the paper.

Publisher

American Mathematical Society

Reference50 articles.

1. Wreath Macdonald polynomials and the categorical McKay correspondence;Bezrukavnikov, Roman;Camb. J. Math.,2014

2. McKay equivalence for symplectic resolutions of quotient singularities;Bezrukavnikov, R. V.;Tr. Mat. Inst. Steklova,2004

3. [BHMPS] J. Blasiak, M. Haiman, J. Morse, A. Pun, G. Seelinger, Dens, nests and the Loehr-Warrington conjecture, arXiv:2112.07070

4. On the Hall algebra of an elliptic curve, I;Burban, Igor;Duke Math. J.,2012

5. London Mathematical Society Lecture Note Series;Cherednik, Ivan,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3