Cluster theory of the coherent Satake category

Author:

Cautis Sabin,Williams Harold

Abstract

We study the category of G ( O ) G(\mathcal {O}) -equivariant perverse coherent sheaves on the affine Grassmannian G r G \mathrm {Gr}_G . This coherent Satake category is not semisimple and its convolution product is not symmetric, in contrast with the usual constructible Satake category. Instead, we use the Beilinson-Drinfeld Grassmannian to construct renormalized r r -matrices. These are canonical nonzero maps between convolution products which satisfy axioms weaker than those of a braiding.

We also show that the coherent Satake category is rigid, and that together these results strongly constrain its convolution structure. In particular, they can be used to deduce the existence of (categorified) cluster structures. We study the case G = G L n G = GL_n in detail and prove that the G m \mathbb {G}_m -equivariant coherent Satake category of G L n GL_n is a monoidal categorification of an explicit quantum cluster algebra.

More generally, we construct renormalized r r -matrices in any monoidal category whose product is compatible with an auxiliary chiral category, and explain how the appearance of cluster algebras in 4d N = 2 \mathcal {N}=2 field theory may be understood from this point of view.

Funder

National Science Foundation

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bases for upper cluster algebras and tropical points;Journal of the European Mathematical Society;2022-12-22

2. Coherent categorification of quantum loop algebras: The SL(2) case;Journal für die reine und angewandte Mathematik (Crelles Journal);2022-09-29

3. Newton–Okounkov bodies for categories of modules over quiver Hecke algebras;Annales de l'Institut Fourier;2022-09-12

4. Toroidal Grothendieck rings and cluster algebras;Mathematische Zeitschrift;2021-06-21

5. Integral quantum cluster structures;Duke Mathematical Journal;2021-04-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3