Explicit stabilized multirate method for stiff differential equations

Author:

Abdulle Assyr,Grote Marcus,Rosilho de Souza Giacomo

Abstract

Stabilized Runge–Kutta methods are especially efficient for the numerical solution of large systems of stiff nonlinear differential equations because they are fully explicit. For semi-discrete parabolic problems, for instance, stabilized Runge–Kutta methods overcome the stringent stability condition of standard methods without sacrificing explicitness. However, when stiffness is only induced by a few components, as in the presence of spatially local mesh refinement, their efficiency deteriorates. To remove the crippling effect of a few severely stiff components on the entire system of differential equations, we derive a modified equation, whose stiffness solely depends on the remaining mildly stiff components. By applying stabilized Runge–Kutta methods to this modified equation, we then devise an explicit multirate Runge–Kutta–Chebyshev (mRKC) method whose stability conditions are independent of a few severely stiff components. Stability of the mRKC method is proved for a model problem, whereas its efficiency and usefulness are demonstrated through a series of numerical experiments.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference66 articles.

1. Fourth order Chebyshev methods with recurrence relation;Abdulle, Assyr;SIAM J. Sci. Comput.,2002

2. Second order Chebyshev methods based on orthogonal polynomials;Abdulle, Assyr;Numer. Math.,2001

3. Numerical methods for stochastic partial differential equations with multiple scales;Abdulle, A.;J. Comput. Phys.,2012

4. Explicit Stabilized Multirate Method for Stiff Stochastic Differential Equations;Abdulle, Assyr;SIAM J. Sci. Comput.,2022

5. A. Abdulle and G. Rosilho de Souza, Instabilities and order reduction phenomenon of an interpolation based multirate Runge–Kutta–Chebyshev method, Tech. Report, EPFL, arXiv:2003.03154 [math.NA], 2020.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3