SYZ transforms for immersed Lagrangian multisections

Author:

Chan Kwokwai,Suen Yat-Hin

Abstract

In this paper, we study the geometry of the SYZ transform on a semiflat Lagrangian torus fibration. Our starting point is an investigation on the relation between Lagrangian surgery of a pair of straight lines in a symplectic 2-torus and the extension of holomorphic vector bundles over the mirror elliptic curve, via the SYZ transform for immersed Lagrangian multisections defined by Arinkin and Joyce [Fukaya category and Fourier transform, AMS/IP Stud. Adv. Math., Amer. Math. Soc., Providence, RI, 2001] and Leung, Yau, and Zaslow [Adv. Theor. Math. Phys. 4 (2000), no. 6, 1319–1341]. This study leads us to a new notion of equivalence between objects in the immersed Fukaya category of a general compact symplectic manifold ( M , ω ) (M, \omega ) , under which the immersed Floer cohomology is invariant; in particular, this provides an answer to a question of Akaho and Joyce [J. Differential Geom. 86 (2010), no. 3, 831–500, Question 13.15]. Furthermore, if M M admits a Lagrangian torus fibration over an integral affine manifold, we prove, under some additional assumptions, that this new equivalence is mirror to an isomorphism between holomorphic vector bundles over the dual torus fibration via the SYZ transform.

Funder

Research Grants Council, University Grants Committee

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference37 articles.

1. Homogeneous coordinate rings and mirror symmetry for toric varieties;Abouzaid, Mohammed;Geom. Topol.,2006

2. On the Fukaya categories of higher genus surfaces;Abouzaid, Mohammed;Adv. Math.,2008

3. Morse homology, tropical geometry, and homological mirror symmetry for toric varieties;Abouzaid, Mohammed;Selecta Math. (N.S.),2009

4. Immersed Lagrangian Floer theory;Akaho, Manabu;J. Differential Geom.,2010

5. Fukaya category and Fourier transform;Arinkin, D.,2001

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3