Integration in reproducing kernel Hilbert spaces of Gaussian kernels

Author:

Karvonen Toni,Oates Chris,Girolami Mark

Abstract

The Gaussian kernel plays a central role in machine learning, uncertainty quantification and scattered data approximation, but has received relatively little attention from a numerical analysis standpoint. The basic problem of finding an algorithm for efficient numerical integration of functions reproduced by Gaussian kernels has not been fully solved. In this article we construct two classes of algorithms that use N N evaluations to integrate d d -variate functions reproduced by Gaussian kernels and prove the exponential or super-algebraic decay of their worst-case errors. In contrast to earlier work, no constraints are placed on the length-scale parameter of the Gaussian kernel. The first class of algorithms is obtained via an appropriate scaling of the classical Gauss–Hermite rules. For these algorithms we derive lower and upper bounds on the worst-case error of the forms exp ( c 1 N 1 / d ) N 1 / ( 4 d ) \exp (-c_1 N^{1/d}) N^{1/(4d)} and exp ( c 2 N 1 / d ) N 1 / ( 4 d ) \exp (-c_2 N^{1/d}) N^{-1/(4d)} , respectively, for positive constants c 1 > c 2 c_1 > c_2 . The second class of algorithms we construct is more flexible and uses worst-case optimal weights for points that may be taken as a nested sequence. For these algorithms we derive upper bounds of the form exp ( c 3 N 1 / ( 2 d ) ) \exp (-c_3 N^{1/(2d)}) for a positive constant  c 3 c_3 .

Funder

Lloyd's Register Foundation

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference34 articles.

1. On multiple node Gaussian quadrature formulae;Barrow, David L.;Math. Comp.,1978

2. Reproducing Kernel Hilbert Spaces in Probability and Statistics

3. Probabilistic integration: a role in statistical computation?;Briol, François-Xavier;Statist. Sci.,2019

4. Average case tractability of multivariate approximation with Gaussian kernels;Chen, Jia;J. Approx. Theory,2019

5. [DS09] S. De Marchi and R. Schaback, Nonstandard kernels and their applications, Dolomites Res. Notes Approx., 2 (2009) 16–43.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Random Fourier Approximation of the Kernel Function in Programmable Networks;Applied Mathematics and Nonlinear Sciences;2022-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3