Deformation of Schottky groups in complex hyperbolic space

Author:

Aebischer Beat,Miner Robert

Abstract

Let G = P U ( 1 , d ) G=PU(1,d) be the group of holomorphic isometries of complex hyperbolic space H C d \mathbf {H}^d_\mathbf {C} . The latter is a Kähler manifold with constant negative holomorphic sectional curvature. We call a finitely generated discrete group Γ = g 1 , , g n G \Gamma = \langle g_1,\dots , g_n \rangle \subset G a marked classical Schottky group of rank n n if there is a fundamental polyhedron for G G whose sides are equidistant hypersurfaces which are disjoint and not asymptotic, and for which g 1 , , g n g_1, \dots , g_n are side-pairing transformations. We consider smooth families of such groups Γ t = g 1 , t , , g n , t \Gamma _t = \langle g_{1,t}, \dots , g_{n,t} \rangle with g j , t g_{j,t} depending smoothly ( C 1 C^1 ) on t t whose fundamental polyhedra also vary smoothly. The groups Γ t \Gamma _t are all algebraically isomorphic to the free group in n n generators, i.e. there are canonical isomorphisms ϕ t : Γ 0 Γ t \phi _t: \Gamma _0\to \Gamma _t . We shall construct a homeomorphism Ψ t \Psi _t of H ¯ C d = H C d H C d \overline {\mathbf {H}}^d_\mathbf {C} = \mathbf {H}^d_\mathbf {C}\cup \partial \mathbf {H}^d_\mathbf {C} which is equivariant with respect to these groups: ϕ t ( g ) Ψ t = Ψ t g g Γ 0 , 0 t 1 \begin{equation*} \phi _t(g) \circ \Psi _t = \Psi _t \circ g \quad \; \forall g\in \Gamma _0, \quad 0\leq t\leq 1 \end{equation*} which is quasiconformal on H C d \partial \mathbf {H}^d_\mathbf {C} with respect to the Heisenberg metric, and which is symplectic in the interior. As a corollary, the limit sets of such Schottky groups of equal rank are quasiconformally equivalent to each other. The main tool for the construction is a time-dependent Hamiltonian vector field used to define a diffeomorphism, mapping D 0 D_0 onto D t D_t , where D t D_t is a fundamental domain of Γ t \Gamma _t . In two steps, this is extended equivariantly to H ¯ C d \overline {\mathbf {H}}^d_\mathbf {C} . The method yields similar results for real hyperbolic space, while the analog for the other rank-one symmetric spaces of noncompact type cannot hold.

Publisher

American Mathematical Society (AMS)

Subject

Geometry and Topology

Reference24 articles.

1. K. Astala and G. J. Martin Holomorphic motions, preprint 1994.

2. On boundaries of Teichmüller spaces and on Kleinian groups. I;Bers, Lipman;Ann. of Math. (2),1970

3. Spaces of Kleinian groups;Bers, Lipman,1970

4. Hyperbolic spaces;Chen, S. S.,1974

5. Hausdorff dimensions of limit sets. I;Corlette, Kevin;Invent. Math.,1990

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bisectors determining unique pairs of points in the bidisk;International Journal of Mathematics;2018-03

2. Quasiconformal deformations of complex hyperbolic p-Schottky groups;Geometriae Dedicata;2016-11-19

3. The geometry of complex hyperbolic packs;Mathematical Proceedings of the Cambridge Philosophical Society;2009-07

4. Ricci nilsoliton black holes;Journal of Geometry and Physics;2008-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3