Bounds on the Picard rank of toric Fano varieties with minimal curve constraints

Author:

Beheshti R.,Wormleighton B.

Abstract

We study the Picard rank of smooth toric Fano varieties constrained to possess families of minimal rational curves of given degree. We discuss variants of a conjecture of Chen–Fu–Hwang and prove a version of their statement that recovers the original conjecture in sufficiently high dimension. We also prove new cases of the original conjecture for high degrees in all dimensions. Our main tools come from toric Mori theory and the combinatorics of Fano polytopes.

Funder

National Science Foundation

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference23 articles.

1. Mirror symmetry and the classification of orbifold del Pezzo surfaces;Akhtar, Mohammad;Proc. Amer. Math. Soc.,2016

2. Minkowski polynomials and mutations;Akhtar, Mohammad;SIGMA Symmetry Integrability Geom. Methods Appl.,2012

3. On the classification of smooth projective toric varieties;Batyrev, Victor V.;Tohoku Math. J. (2),1991

4. On the classification of toric Fano 4-folds;Batyrev, V. V.;J. Math. Sci. (New York),1999

5. Brown, G., and Kasprzyk, A. M. Graded ring database. Online. Access via \url{http://www.grdb.co.uk} (2015).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The minimal projective bundle dimension and toric 2-Fano manifolds;Transactions of the American Mathematical Society;2024-07-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3