Hessenberg varieties and Poisson slices

Author:

Crooks Peter,Röser Markus

Abstract

This expository article considers a circle of Lie-theoretic ideas involving Hessenberg varieties, Poisson geometry, and wonderful compactifications. In more detail, one may associate a symplectic Hamiltonian G G -variety μ : G × S g \mu :G\times \mathcal {S}\longrightarrow \mathfrak {g} to each complex semisimple Lie algebra g \mathfrak {g} with adjoint group G G and fixed Kostant section S g \mathcal {S}\subseteq \mathfrak {g} . This variety is one of Bielawski’s hyperkähler slices, and it is central to Moore and Tachikawa’s work on topological quantum field theories. It also bears a close relation to two log symplectic Hamiltonian G G -varieties μ ¯ S : G × S ¯ g \overline {\mu }_{\mathcal {S}}:\overline {G\times \mathcal {S}}\longrightarrow \mathfrak {g} and ν : H e s s g \nu :\mathrm {Hess}\longrightarrow \mathfrak {g} . The former is a Poisson transversal in the log cotangent bundle of the wonderful compactification G ¯ \overline {G} , while the latter is the standard family of Hessenberg varieties. Each of μ ¯ \overline {\mu } and ν \nu is known to be a fibrewise compactification of μ \mu .

We exploit the theory of Poisson slices to relate the fibrewise compactifications mentioned above. Our work is shown to be compatible with a Poisson isomorphism obtained by Bălibanu.

Publisher

American Mathematical Society

Reference39 articles.

1. Hessenberg varieties for the minimal nilpotent orbit;Abe, Hiraku;Pure Appl. Math. Q.,2016

2. Hessenberg varieties, Slodowy slices, and integrable systems;Abe, Hiraku;Math. Z.,2019

3. Geometry of Hessenberg varieties with applications to Newton-Okounkov bodies;Abe, Hiraku;Selecta Math. (N.S.),2018

4. The cohomology rings of regular semisimple Hessenberg varieties for ℎ=(ℎ(1),𝑛,…,𝑛);Abe, Hiraku;J. Comb.,2019

5. A. Bălibanu, The partial compactification of the universal centralizer, arXiv:1710.06327, (2021), 28pp.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3