Dynamics of quadratic polynomials and rational points on a curve of genus 4

Author:

Fu Hang,Stoll Michael

Abstract

Let f t ( z ) = z 2 + t f_t(z)=z^2+t . For any z Q z\in \mathbb {Q} , let S z S_z be the collection of t Q t\in \mathbb {Q} such that z z is preperiodic for f t f_t . In this article, assuming a well-known conjecture of Flynn, Poonen, and Schaefer [Duke Math. J. 90 (1997), pp. 435–463], we prove a uniform result regarding the size of S z S_z over z Q z\in \mathbb {Q} . In order to prove it, we need to determine the set of rational points on a specific non-hyperelliptic curve C C of genus 4 4 defined over Q \mathbb {Q} . We use Chabauty’s method, which requires us to determine the Mordell-Weil rank of the Jacobian J J of C C . We give two proofs that the rank is 1 1 : an analytic proof, which is conditional on the BSD rank conjecture for J J and some standard conjectures on L-series, and an algebraic proof, which is unconditional, but relies on the computation of the class groups of two number fields of degree 12 12 and degree 24 24 , respectively. We finally combine the information obtained from both proofs to provide a numerical verification of the strong BSD conjecture for J J .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3