Explicit formulas for general order multivariate Padé approximants of pseudo-multivariate functions are constructed on specific index sets. Examples include the multivariate forms of the exponential function
E
(
x
_
)
=
∑
j
1
,
j
2
,
…
,
j
m
=
0
∞
x
1
j
1
x
2
j
2
⋯
x
m
j
m
(
j
1
+
j
2
+
⋯
+
j
m
)
!
,
\begin{equation*} E\left (\underline {x}\right ) =\sum _{j_{1},j_{2},\ldots ,j_{m}=0}^{\infty } \frac {x_{1}^{j_{1}}x_{2}^{j_{2}}\cdots x_{m}^{j_{m}}}{\left ( j_{1}+j_{2}+\cdots +j_{m}\right ) !}, \end{equation*}
the logarithm function
L
(
x
_
)
=
∑
j
1
+
j
2
+
⋯
+
j
m
≥
1
x
1
j
1
x
2
j
2
⋯
x
m
j
m
j
1
+
j
2
+
⋯
+
j
m
,
\begin{equation*} L(\underline {x})=\sum _{j_{1}+j_{2}+\cdots +j_{m}\geq 1}\frac { x_{1}^{j_{1}}x_{2}^{j_{2}}\cdots x_{m}^{j_{m}}}{j_{1}+j_{2}+\cdots +j_{m}}, \end{equation*}
the Lauricella function
F
D
(
m
)
(
a
,
1
,
…
,
1
;
c
;
x
1
,
…
,
x
m
)
=
∑
j
1
,
j
2
,
…
,
j
m
=
0
∞
(
a
)
j
1
+
⋯
+
j
m
(
c
)
j
1
+
⋯
+
j
m
x
1
j
1
⋯
x
m
j
m
,
\begin{equation*} F_{D}^{\left ( m\right ) }\left ( a,1,\ldots ,1;c;x_{1},\ldots ,x_{m}\right ) =\sum _{j_{1},j_{2},\ldots ,j_{m}=0}^{\infty }\frac {\left ( a\right ) _{j_{1}+\cdots +j_{m}}}{\left ( c\right ) _{j_{1}+\cdots +j_{m}}} x_{1}^{j_{1}}\cdots x_{m}^{j_{m}}, \end{equation*}
and many more. We prove that the constructed approximants inherit the normality and consistency properties of their univariate relatives. These properties do not hold in general for multivariate Padé approximants. A truncation error upperbound is also given.