Some extensions of the Lanczos-Ortiz theory of canonical polynomials in the Tau Method

Author:

Bunchaft M.

Abstract

Lanczos and Ortiz placed the canonical polynomials (c.p.’s) in a central position in the Tau Method. In addition, Ortiz devised a recursive process for determining c.p.’s consisting of a generating formula and a complementary algorithm coupled to the formula. In this paper a) We extend the theory so as to include in the formalism also the ordinary linear differential operators with polynomial coefficients D D with negative height h = max n N { m n n } > 0 , \begin{equation*}h=\underset {{n\in N}}{\max } \{m_{n}-n\}>0, \end{equation*} where m n m_{n} denotes the degree of D x n Dx^{n} . b) We establish a basic classification of the c.p.’s Q m ( x ) Q_{m}(x) and their orders m M m\in M , as primary or derived, depending, respectively, on whether n N : m n = m \exists n\in \mathbf {N}\colon m_{n}=m or such n n does not exist; and we state a classification of the indices n N n\in \mathbf {N} , as generic ( m n = n + h ) (m_{n}=n+h) , singular ( m n > n + h ) (m_{n}>n+h) , and indefinite ( D x n 0 ) (Dx^{n}\equiv 0) . Then a formula which gives the set of primary orders is proved. c) In the rather frequent case in which all c.p.’s are primary, we establish, for differential operators D D with any height h h , a recurrency formula which generates bases of the polynomial space and their multiple c.p.’s arising from distinct x n x^{n} , n N n\in N , so that no complementary algorithmic construction is needed; the (primary) c.p.’s so produced are classified as generic or singular, depending on the index n n . d) We establish the general properties of the multiplicity relations of the primary c.p.’s and of their associated indices. It becomes clear that Ortiz’s formula generates, for h 0 h\ge 0 , the generic c.p.’s in terms of the singular and derived c.p.’s, while singular and derived c.p.’s and the multiples of distinct indices are constructed by the algorithm.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference17 articles.

1. Lanczos, C.: Trigonometric interpolation of empirical and analytical functions, J. Math. Phys. 17, (1938), 123–199.

2. Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper;Arf, Cahit;J. Reine Angew. Math.,1939

3. Sur quelques aspects algébriques d’une méthode d’approximation de M. Lanczos;Llorente, P.;Math. Notae,1966

4. The tau method;Ortiz, Eduardo L.;SIAM J. Numer. Anal.,1969

5. Canonical polynomials in the Lanczos tau method;Ortiz, Eduardo L.,1974

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3