The construction of rational iterating functions

Author:

Smyth W. F.

Abstract

Suppose integers n 1 n \geqslant 1 and σ 2 \sigma \geqslant 2 are given, together with n distinct points z 2 , , z n {z_2}, \ldots ,{z_n} , in the complex plane. Define Φ M = Φ M ( σ ; z 1 , , z n ) {\Phi _M} = {\Phi _M}(\sigma ;{z_1}, \ldots ,{z_n}) to be the class of rational functions ϕ p , q ( z ) = g p ( z ) / h q ( z ) {\phi _{p,q}}(z) = {g_p}(z)/{h_q}(z) (where g and h are polynomials of degree p 1 p \geqslant 1 and q 1 q \geqslant 1 , respectively) such that ( 1 ) p + q + 1 = M , ( 2 ) ϕ (1)\;p + q + 1 = M,(2)\;\phi when iterated converges with order σ \sigma at each z i , i = 1 , , n {z_i}, i = 1, \ldots ,n . Then if M > σ n , Φ M M > \sigma n,{\Phi _M} is null; if M = σ n M = \sigma n Φ M {\Phi _M} contains exactly σ n \sigma n elements. For every M σ n M \geqslant \sigma n , we show how to construct all the elements of Φ M {\Phi _M} by expressing, for each choice of p and q which satisfies p + q + 1 = M p + q + 1 = M , the coefficients of g p {g_p} and h q {h_q} in terms of M σ n M - \sigma n arbitrarily chosen values. In fact, these coefficients are expressed in terms of generalized Newton sums S n j , k = S n j , k ( z 1 , , z n ) S_n^{j,k} = S_n^{j,k}({z_1}, \ldots ,{z_n}) , 1 j n , k n 1 \leqslant j \leqslant n,k \geqslant n , which we show may be calculated by recursion from the normal Newton sums S n j , n S_n^{j,n} . Hence, given a polynomial f n ( z ) {f_n}(z) with n distinct (unknown) zeros z 1 , , z n {z_1}, \ldots ,{z_n} , we may construct all ϕ p , q ( z ) {\phi _{p,q}}(z) which converge to the z i {z_i} with order σ \sigma in the case σ = 2 \sigma = 2 , the choice p = n p = n , q = n 1 q = n - 1 , yields the Newton-Raphson iteration ϕ n , n 1 Φ 2 n {\phi _{n,n - 1}} \in {\Phi _{2n}} ; the Schröder and König iterations are shown to be elements of Φ 2 ( 2 σ 3 ) ( n 1 ) + 2 {\Phi _{2(2\sigma - 3)(n - 1) + 2}} and Φ 2 ( σ 1 ) ( n 1 ) + 2 {\Phi _{2(\sigma - 1)(n - 1) + 2}} , respectively. We show by example that there exist cases in which ϕ n , n 1 {\phi _{n,n - 1}} has an undesirable property (attractive cycles) not shared by other iterating functions in the same class Φ 2 n {\Phi _{2n}} .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference15 articles.

1. GASTON JULIA, "Mémoires sur l’itération des fonctions rationnelles," J. Math. Pures Appl., v. 1, 1918, pp. 47-245.

2. Sur les équations fonctionnelles;Fatou, P.;Bull. Soc. Math. France,1919

3. PAUL MONTEL, Leçons sur les Familles Normales de Fonctions Analytiques et Leurs Applications, Gauthier-Villars, Paris, 1927.

4. L’itération;Montel, Paul;Univ. Nac. La Plata. Publ. Fac. Ci. Fisicomat. Serie Segunda. Rev.,1940

5. On the iteration of analytic functions;Rådström, Hans;Math. Scand.,1953

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3