Does a typical ℓ_{𝑝}-space contraction have a non-trivial invariant subspace?

Author:

Grivaux Sophie,Matheron Étienne,Menet Quentin

Abstract

Given a Polish topology τ \tau on B 1 ( X ) \mathcal {B}_{1}(X) , the set of all contraction operators on X = p X=\ell _p , 1 p > 1\le p>\infty or X = c 0 X=c_0 , we prove several results related to the following question: does a typical T B 1 ( X ) T\in \mathcal {B}_{1}(X) in the Baire Category sense has a non-trivial invariant subspace? In other words, is there a dense G δ G_\delta set G ( B 1 ( X ) , τ ) \mathcal G\subseteq (\mathcal {B}_{1}(X),\tau ) such that every T G T\in \mathcal G has a non-trivial invariant subspace? We mostly focus on the Strong Operator Topology and the Strong ^* Operator Topology.

Funder

Fonds De La Recherche Scientifique - FNRS

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference38 articles.

1. A hereditarily indecomposable ℒ_{∞}-space that solves the scalar-plus-compact problem;Argyros, Spiros A.;Acta Math.,2011

2. Invariant subspaces for polynomially bounded operators;Ambrozie, Călin;J. Funct. Anal.,2004

3. Constrained von Neumann inequalities;Badea, C.;Adv. Math.,2002

4. Cambridge Tracts in Mathematics;Bayart, Frédéric,2009

5. On the structure of contraction operators. II;Brown, Scott W.;J. Funct. Anal.,1988

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interpolation and non-dilatable families of $$\mathcal {C}_{0}$$-semigroups;Banach Journal of Mathematical Analysis;2024-04-18

2. Recurrence properties for linear dynamical systems: An approach via invariant measures;Journal de Mathématiques Pures et Appliquées;2023-01

3. Local Spectral Properties of Typical Contractions on ℓp-Spaces;Analysis Mathematica;2022-07-14

4. The space of contractive C0-semigroups is a Baire space;Journal of Mathematical Analysis and Applications;2022-04

5. On the complete metrisability of spaces of contractive semigroups;Archiv der Mathematik;2022-03-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3