Geodesics in generalizations of the Sierpinski carpet

Author:

Berkove Ethan,Karangozishvili Elene,Smith Derek

Abstract

We analyze geodesics in a 3-parameter family of fractals that contains the Sierpinski carpet and Menger sponge, generalizing results in the literature. Between any two points in one of these fractals, we construct a geodesic path, where path lengths are induced by the 1-norm. For any of these fractals we then determine the maximum possible ratio of the geodesic metric to the Euclidean metric, and we provide examples to show that this upper bound is sharp.

Publisher

American Mathematical Society

Reference21 articles.

1. Distribution of distances and interior distances for certain self-similar measures;Bandt, Christoph;Arab. J. Sci. Eng. Sect. C Theme Issues,2004

2. Analysis on the Sierpinski carpet;Barlow, M. T.,2013

3. Brownian motion and harmonic analysis on Sierpinski carpets;Barlow, Martin T.;Canad. J. Math.,1999

4. Ethan Berkove and Derek Smith, Geodesics in the Sierpinski carpet and Menger sponge, Fractals 28 (2020), no. 7, 2050120, DOI: 10.1142/S0218348X20501200.

5. Graduate Studies in Mathematics;Burago, Dmitri,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3