Lattice theory of torsion classes: Beyond 𝜏-tilting theory

Author:

Demonet Laurent,Iyama Osamu,Reading Nathan,Reiten Idun,Thomas Hugh

Abstract

The aim of this paper is to establish a lattice theoretical framework to study the partially ordered set t o r s A \mathsf {tors} A of torsion classes over a finite-dimensional algebra A A . We show that t o r s A \mathsf {tors} A is a complete lattice which enjoys very strong properties, as bialgebraicity and complete semidistributivity. Thus its Hasse quiver carries the important part of its structure, and we introduce the brick labelling of its Hasse quiver and use it to study lattice congruences of t o r s A \mathsf {tors} A . In particular, we give a representation-theoretical interpretation of the so-called forcing order, and we prove that t o r s A \mathsf {tors} A is completely congruence uniform. When I I is a two-sided ideal of A A , t o r s ( A / I ) \mathsf {tors} (A/I) is a lattice quotient of t o r s A \mathsf {tors} A which is called an algebraic quotient, and the corresponding lattice congruence is called an algebraic congruence. The second part of this paper consists in studying algebraic congruences. We characterize the arrows of the Hasse quiver of t o r s A \mathsf {tors} A that are contracted by an algebraic congruence in terms of the brick labelling. In the third part, we study in detail the case of preprojective algebras Π \Pi , for which t o r s Π \mathsf {tors} \Pi is the Weyl group endowed with the weak order. In particular, we give a new, more representation theoretical proof of the isomorphism between t o r s k Q \mathsf {tors} k Q and the Cambrian lattice when Q Q is a Dynkin quiver. We also prove that, in type A A , the algebraic quotients of t o r s Π \mathsf {tors} \Pi are exactly its Hasse-regular lattice quotients.

Funder

Japan Society for the Promotion of Science

Publisher

American Mathematical Society (AMS)

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference43 articles.

1. Classification of two-term tilting complexes over Brauer graph algebras;Adachi, Takahide;Math. Z.,2018

2. 𝜏-tilting theory;Adachi, Takahide;Compos. Math.,2014

3. Join-semidistributive lattices and convex geometries;Adaricheva, K. V.;Adv. Math.,2003

4. Classes of semidistributive lattices;Adaricheva, K.,2016

5. Semibricks;Asai, Sota;Int. Math. Res. Not. IMRN,2020

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Shard Theory for g-Fans;International Mathematics Research Notices;2024-09-09

2. Classifying subcategories of modules over Noetherian algebras;Advances in Mathematics;2024-06

3. A Facial Order for Torsion Classes;International Mathematics Research Notices;2024-04-22

4. Triangulations of Prisms and Preprojective Algebras of Type A;International Mathematics Research Notices;2024-04-16

5. Simples in a cotilting heart;Mathematische Zeitschrift;2024-04-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3