Horocycle flows on certain surfaces without conjugate points

Author:

Eberlein Patrick

Abstract

We study the topological but not ergodic properties of the horocycle flow { h t } \{ {h_t}\} in the unit tangent bundle SM of a complete two dimensional Riemannian manifold M without conjugate points that satisfies the “uniform Visibility” axiom. This axiom is implied by the curvature condition K c > 0 K \leqslant c > 0 but is weaker so that regions of positive curvature may occur. Compactness is not assumed. The method is to relate the horocycle flow to the geodesic flow for which there exist useful techniques of study. The nonwandering set Ω h S M {\Omega _h} \subseteq SM for { h t } \{ {h_t}\} is classified into four types depending upon the fundamental group of M. The extremes that Ω h {\Omega _h} be a minimal set for { h t } \{ {h_t}\} and that Ω h {\Omega _h} admit periodic orbits are related to the existence or nonexistence of compact “totally convex” sets in M. Periodic points are dense in Ω h {\Omega _h} if they exist at all. The only compact minimal sets in Ω h {\Omega _h} are periodic orbits if M is noncompact The flow { h t } \{ {h_t}\} is minimal in SM if and only if M is compact. In general { h t } \{ {h_t}\} is topologically transitive in Ω h {\Omega _h} and the vectors in Ω h {\Omega _h} with dense orbits are classified. If the fundamental group of M is finitely generated and Ω h = S M {\Omega _h} = SM then { h t } \{ {h_t}\} is topologically mixing in SM.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference20 articles.

1. Manifolds of negative curvature;Bishop, R. L.;Trans. Amer. Math. Soc.,1969

2. The cut locus of noncompact finitely connected surfaces without conjugate points;Eberlein, Patrick;Comment. Math. Helv.,1976

3. \bysame, Geodesies and ends in certain surfaces without conjugate points, Advances of Math. (to appear).

4. Geodesic flow in certain manifolds without conjugate points;Eberlein, Patrick;Trans. Amer. Math. Soc.,1972

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3