An algebraic proof for the symplectic structure of moduli space

Author:

Karshon Yael

Abstract

Goldman has constructed a symplectic form on the moduli space Hom ( π , G ) / G \operatorname {Hom} (\pi ,G)/G , of flat G G -bundles over a Riemann surface S S whose fundamental group is π \pi . The construction is in terms of the group cohomology of π \pi . The proof that the form is closed, though, uses de Rham cohomology of the surface S S , with local coefficients. This symplectic form is shown here to be the restriction of a tensor, that is defined on the infinite product space G π {G^\pi } . This point of view leads to a direct proof of the closedness of the form, within the language of group cohomology. The result applies to all finitely generated groups π \pi whose cohomology satisfies certain conditions. Among these are the fundamental groups of compact Kähler manifolds.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference4 articles.

1. The Yang-Mills equations over Riemann surfaces;Atiyah, M. F.;Philos. Trans. Roy. Soc. London Ser. A,1983

2. Graduate Texts in Mathematics;Bott, Raoul,1982

3. The symplectic nature of fundamental groups of surfaces;Goldman, William M.;Adv. in Math.,1984

4. Pure and Applied Mathematics;Griffiths, Phillip,1978

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum Character Varieties;Reference Module in Materials Science and Materials Engineering;2024

2. Quasi Poisson structures, weakly quasi Hamiltonian structures, and Poisson geometry of various moduli spaces;Journal of Geometry and Physics;2023-08

3. Symplectic Coordinates on the Deformation Spaces of Convex Projective Structures on 2-Orbifolds;Transformation Groups;2022-12-29

4. Volume and symplectic structure for ℓ-adic local systems;Advances in Mathematics;2021-08

5. Poisson Smooth Structures on Stratified Symplectic Spaces;Springer Proceedings in Mathematics & Statistics;2014-10-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3