Periodic potentials with minimal energy bands

Author:

Ashbaugh Mark S.,Svirsky Roman

Abstract

We consider the problem of minimizing the width of the lowest band in the spectrum of Hill’s equation, u + q ( x ) u = λ u - u + q\left ( x \right )u = \lambda u on R \mathbb {R} with q ( x + 1 ) = q ( x ) q\left ( {x + 1} \right ) = q\left ( x \right ) for all x R x \in \mathbb {R} , when the potential function q q is allowed to vary over a ball of radius M > 0  in  L M > 0{\text { in }}{L^\infty } . We show that minimizing potentials q {q_ * } exist and that, when considered as functions on the circle, they must have exactly one well on which q ( x ) {q_ * }\left ( x \right ) must equal M - M and one barrier on which q ( x ) {q_ * }\left ( x \right ) must equal M M ; these are the only values that q {q_ * } can assume (up to changes on sets of measure zero). That is, on the circle there is a single interval where q ( x ) = M {q_ * }\left ( x \right ) = M and on the complementary interval q ( x ) = M {q_ * }\left ( x \right ) = - M . These results can be used to solve the problem of minimizing the gap between the lowest Neumann eigenvalue and either the lowest Dirichlet eigenvalue or the second Neumann eigenvalue for the same equation restricted to the interval [ 0 , 1 ] [0,1] .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference10 articles.

1. Optimization of the characteristic values of Hill’s equation subject to a 𝑝-norm constraint on the potential;Ashbaugh, Mark S.;J. Math. Anal. Appl.,1989

2. M. S. Ashbaugh and E. M. Harrell, Potentials having extremal eigenvalues subject to 𝑝-norm constraints (Proc. 1984 Workshop on Spectral Theory of Sturm-Liouville Differential Operators) (H. G. Kaper and A. Zettl, eds.), ANL-84-73, Argonne National Laboratory, Argonne, IL, 1984, pp. 19-29. (Available from National Technical Information Service, Springfield, VA.)

3. Maximal and minimal eigenvalues and their associated nonlinear equations;Ashbaugh, Mark S.;J. Math. Phys.,1987

4. On minimal and maximal eigenvalue gaps and their causes;Ashbaugh, Mark S.;Pacific J. Math.,1991

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing the fundamental eigenvalue gap of quantum graphs;Journal of Physics A: Mathematical and Theoretical;2024-09-06

2. Extremal spectral gaps for periodic Schrödinger operators;ESAIM: Control, Optimisation and Calculus of Variations;2019

3. The dual eigenvalue problems for p-Laplacian;Acta Mathematica Hungarica;2013-09-18

4. The dual eigenvalue problems for the Sturm–Liouville system;Computers & Mathematics with Applications;2010-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3