We establish a new mean value theorem applicable to lower semi-continuous functions on Hilbert space. A novel feature of the result is its "multidirectionality": it compares the value of a function at a point to its values on a set. We then discuss some refinements and consequences of the theorem, including applications to calculus, flow invariance, and generalized solutions to partial differential equations. Résumé. On établit un nouveau théorème de la valeur moyenne qui s’applique aux fonctions semicontinues inférieurement sur un espace de Hilbert. On déduit plusieurs conséquences du résultat portant, par exemple, sur les fonctions monotones et sur les solutions généralisées des équations aux dérivées partielles.