The spectrum of a Riemannian manifold with a unit Killing vector field

Author:

Bleecker David D.

Abstract

Let ( P , g ) (P,g) be a compact, connected, C {C^\infty } Riemannian ( n + 1 ) (n + 1) -manifold ( n 1 ) (n \geqslant 1) with a unit Killing vector field with dual 1 1 -form η \eta . For t > 0 t > 0 , let g t = t 1 g + ( t n t 1 ) η η {g_{t}} = {t^{ - 1}}g + (t^{n}-t^{-1})\eta \otimes \eta , a family of metrics of fixed volume element on P P . Let λ 1 ( t ) {\lambda _1}(t) be the first nonzero eigenvalue of the Laplace operator on C ( P ) {C^\infty }(P) of the metric g t {g_t} . We prove that if d η d\eta is nowhere zero, then λ 1 ( t ) {\lambda _1}(t) \to \infty as t t \to \infty . Using this construction, we find that, for every dimension greater than two, there are infinitely many topologically distinct compact manifolds for which λ 1 {\lambda _1} is unbounded on the space of fixed-volume metrics.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference9 articles.

1. Sur les premières valeurs propres des variétés riemanniennes;Berger, M.;Compositio Math.,1973

2. Global Analysis Pure and Applied: Series A;Bleecker, David,1981

3. Uniqueness in the Cauchy problem for partial differential equations;Calderón, A.-P.;Amer. J. Math.,1958

4. Quatre propriétés isopérimétriques de membranes sphériques homogènes;Hersch, Joseph;C. R. Acad. Sci. Paris S\'{e}r. A-B,1970

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deformation of Kähler metrics and an eigenvalue problem for the Laplacian on a compact Kähler manifold;manuscripta mathematica;2024-09-09

2. Large Steklov Eigenvalues Under Volume Constraints;The Journal of Geometric Analysis;2024-08-19

3. Small eigenvalues of the rough and Hodge Laplacians under fixed volume;Annales de la Faculté des sciences de Toulouse : Mathématiques;2024-07-26

4. Dirac cohomology on manifolds with boundary and spectral lower bounds;Partial Differential Equations and Applications;2023-10-11

5. Some recent developments on the Steklov eigenvalue problem;Revista Matemática Complutense;2023-09-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3