Pseudojump operators. I. The r.e. case

Author:

Jockusch Carl G.,Shore Richard A.

Abstract

Call an operator J J on the power set of ω \omega a pseudo jump operator if J ( A ) J(A) is uniformly recursively enumerable in A A and A A is recursive in J ( A ) J(A) for all subsets A A of ω \omega . Thus the (Turing) jump operator is a pseudo jump operator, and any existence proof in the theory of r.e. degrees yields, when relativized, one or more pseudo jump operators. Extending well-known results about the jump, we show that for any pseudo jump operator J J , every degree 0 \geqslant {\mathbf {0}}’ has a representative in the range of J J , and that there is a nonrecursive r.e. set A A with J ( A ) J(A) of degree 0 {\mathbf {0}}’ . The latter result yields a finite injury proof in two steps that there is an incomplete high r.e. degree, and by iteration analogous results for other levels of the H n {H_n} , L n {L_n} hierarchy of r.e. degrees. We also establish a result on pairs of pseudo jump operators. This is combined with Lachlan’s result on the impossibility of combining splitting and density for r.e. degrees to yield a new proof of Harrington’s result that 0 {\mathbf {0}}’ does not split over all lower r.e. degrees.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference26 articles.

1. S. B. Cooper, Sets recursively enumerable in high degrees, Abstract 72T-E4, Notices Amer. Math. Soc. 19 (1972), A-20.

2. \bysame, Initial segments of the degrees containing nonrecursive recursively enumerable degrees, preprint.

3. \bysame, On a theorem of C. E. M. Yates, handwritten notes.

4. A criterion for completeness of degrees of unsolvability;Friedberg, Richard;J. Symbolic Logic,1957

5. A basis result for Σ⁰₃ sets of reals with an application to minimal covers;Harrington, Leo A.;Proc. Amer. Math. Soc.,1975

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Jumps of the Degrees Below a Recursively Enumerable Degree;Notre Dame Journal of Formal Logic;2018-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3