The Brezis-Nirenberg result for the fractional Laplacian

Author:

Servadei Raffaella,Valdinoci Enrico

Abstract

The aim of this paper is to deal with the non-local fractional counterpart of the Laplace equation involving critical non-linearities studied in the famous paper of Brezis and Nirenberg (1983). Namely, our model is the equation \[ { ( Δ ) s u λ u = | u | 2 2 u a m p ;  in  Ω , u = 0 a m p ;  in  R n Ω , \left \{ \begin {array}{ll} (-\Delta )^s u-\lambda u=|u|^{2^*-2}u & {\mbox { in }} \Omega ,\\ u=0 & {\mbox { in }} \mathbb {R}^n\setminus \Omega \,, \end {array} \right . \] where ( Δ ) s (-\Delta )^s is the fractional Laplace operator, s ( 0 , 1 ) s\in (0,1) , Ω \Omega is an open bounded set of R n \mathbb {R}^n , n > 2 s n>2s , with Lipschitz boundary, λ > 0 \lambda >0 is a real parameter and 2 = 2 n / ( n 2 s ) 2^*=2n/(n-2s) is a fractional critical Sobolev exponent.

In this paper we first study the problem in a general framework; indeed we consider the equation \[ { L K u + λ u + | u | 2 2 u + f ( x , u ) = 0 a m p ; in  Ω , u = 0 a m p ; in  R n Ω , \left \{ \begin {array}{ll} \mathcal L_K u+\lambda u+|u|^{2^*-2}u+f(x, u)=0 & \mbox {in } \Omega ,\\ u=0 & \mbox {in } \mathbb {R}^n\setminus \Omega \,, \end {array}\right . \] where L K \mathcal L_K is a general non-local integrodifferential operator of order  s s and f f is a lower order perturbation of the critical power | u | 2 2 u |u|^{2^*-2}u . In this setting we prove an existence result through variational techniques.

Then, as a concrete example, we derive a Brezis-Nirenberg type result for our model equation; that is, we show that if  λ 1 , s \lambda _{1,s} is the first eigenvalue of the non-local operator  ( Δ ) s (-\Delta )^s with homogeneous Dirichlet boundary datum, then for any  λ ( 0 , λ 1 , s ) \lambda \in (0, \lambda _{1,s}) there exists a non-trivial solution of the above model equation, provided n 4 s n\geqslant 4s . In this sense the present work may be seen as the extension of the classical Brezis-Nirenberg result to the case of non-local fractional operators.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference18 articles.

1. Dual variational methods in critical point theory and applications;Ambrosetti, Antonio;J. Functional Analysis,1973

2. Collection Math\'{e}matiques Appliqu\'{e}es pour la Ma\^{\i}trise. [Collection of Applied Mathematics for the Master's Degree];Brezis, Haïm,1983

3. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents;Brézis, Haïm;Comm. Pure Appl. Math.,1983

4. An extension problem related to the fractional Laplacian;Caffarelli, Luis;Comm. Partial Differential Equations,2007

5. An existence result for nonlinear elliptic problems involving critical Sobolev exponent;Capozzi, A.;Ann. Inst. H. Poincar\'{e} Anal. Non Lin\'{e}aire,1985

Cited by 345 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3