We show that every positive solution of the equation
\[
x
n
+
1
=
A
x
n
+
1
x
n
−
2
,
n
=
0
,
1
,
…
,
x_{n+1} = \frac {A}{x_{n}} + \frac {1}{x_{n-2}}, \hspace {.2in} n = 0, 1, \ldots ,
\]
where
A
∈
(
0
,
∞
)
A \in (0, \infty )
, converges to a period two solution.