Centers of generic Hecke algebras

Author:

Jones Lenny K.

Abstract

Let W W be a Weyl group and let W W’ be a parabolic subgroup of W W . Define A A as follows: \[ A = R Q [ u ] A ( W ) A = R{ \otimes _{{\mathbf {Q}}[u]}}\mathcal {A}(W) \] where A ( W ) \mathcal {A}(W) is the generic algebra of type A n {A_n} over Q [ u ] {\mathbf {Q}}[u] an indeterminate, associated with the group W W , and R R is a Q [ u ] {\mathbf {Q}}[u] -algebra, possibly of infinite rank, in which u u is invertible. Similarly, we define A A’ associated with W W’ . Let M M be an A A A - A bimodule, and let b M b \in M . Define the relative norm [14] \[ N W , W ( b ) = t T u l ( t ) a t 1 b a t {N_{W,W’}}(b) = \sum \limits _{t \in T} {{u^{ - l(t)}}{a_{{t^{ - 1}}}}b{a_t}} \] where T T is the set of distinguished right coset representives for W W’ in W W . We show that if b Z M ( A ) = { m M | m a = a m a A } b \in {Z_M}(A’) = \{ m \in M|ma’ = a’m\quad \forall a’ \in A’\} , then N W , W ( b ) Z M ( A ) {N_{W,W’}}(b) \in {Z_M}(A) . In addition, other properties of the relative norm are given and used to develop a theory of induced modules for generic Hecke algebras including a Markey decomposition. This section of the paper is previously unpublished work of P. Hoefsmit and L. L. Scott. Let α = ( k 1 , k 2 , , k z ) \alpha = ({k_1},{k_2}, \ldots ,{k_z}) be a partition of n n and let S α = Π i = 1 Z S k i {S_\alpha } = \Pi _{i = 1}^Z{S_{{k_i}}} be a "left-justified" parabolic subgroup of S n {S_n} of shape α \alpha . Define \[ b α = N S n , S α ( N α ) {b_\alpha } = {N_{{S_n},{S_\alpha }}}({\mathcal {N}_\alpha }) \] , where \[ N α = i = 1 z N S k i 1 , S 1 ( a w i ) {\mathcal {N}_\alpha } = \prod \limits _{i = 1}^z {{N_{{S_{{k_i} - 1}},{S_1}}}({a_{{w_i}}})} \] with w i {w_i} a k i {k_i} -cycle of length k i 1 {k_i} - 1 in S k i {S_{{k_i}}} . Then the main result of this paper is Theorem. The set { b α | α n } \{ {b_\alpha }|\alpha \vdash n\} is a basis for Z A ( S n ) ( A ( S n ) ) {Z_{A({S_n})}}(A({S_n})) over Q [ u , u 1 ] {\mathbf {Q}}[u,{u^{ - 1}}] . Remark. The norms b α {b_\alpha } in Z A ( S n ) ( A ( S n ) ) {Z_{A({S_n})}}(A({S_n})) are analogs of conjugacy class sums in the center of Q S n {\mathbf {Q}}{S_n} and, in fact, specialization of these norms at u = 1 u = 1 gives the standard conjugacy class sum basis of the center of Q S n {\mathbf {Q}}{S_n} up to coefficients from Q {\mathbf {Q}} .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference18 articles.

1. Cambridge Studies in Advanced Mathematics;Aschbacher, Michael,1986

2. Actualit\'{e}s Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337;Bourbaki, N.,1968

3. Pure and Applied Mathematics, Vol. 28;Carter, Roger W.,1972

4. Representations of finite groups of Lie type;Curtis, Charles W.;Bull. Amer. Math. Soc. (N.S.),1979

5. On Lusztig’s isomorphism theorem for Hecke algebras;Curtis, Charles W.;J. Algebra,1985

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Schur–Weyl duality and centers of quantum Schur algebras;Journal of Pure and Applied Algebra;2021-05

2. Vertices for Iwahori–Hecke algebras and the Dipper–Du conjecture;Proceedings of the London Mathematical Society;2019-02-06

3. MULTIPLICATION FORMULAS AND SEMISIMPLICITY FOR -SCHUR SUPERALGEBRAS;Nagoya Mathematical Journal;2018-04-30

4. Representations of q-Schur superalgebras in positive characteristics;Journal of Algebra;2017-07

5. Irreducible representations of q-Schur superalgebras at a root of unity;Journal of Pure and Applied Algebra;2014-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3