Self-similar measures and their Fourier transforms. II

Author:

Strichartz Robert S.

Abstract

A self-similar measure on R n {{\mathbf {R}}^n} was defined by Hutchinson to be a probability measure satisfying ( ) ({\ast }) \[ μ = j = 1 m a j μ S j 1 \mu = \sum \limits _{j = 1}^m {{a_j}\mu \circ S_j^{ - 1}} \] , where S j x = ρ j R j x + b j {S_j}x = {\rho _j}{R_j}x + {b_j} is a contractive similarity ( 0 > ρ j > 1 , R j (0 > {\rho _j} > 1,{R_j} orthogonal) and the weights a j {a_j} satisfy 0 > a j > 1 , j = 1 m a j = 1 0 > {a_j} > 1,\sum \nolimits _{j = 1}^m {{a_j} = 1} . By analogy, we define a self-similar distribution by the same identity ( ) ( {\ast } ) but allowing the weights a j {a_j} to be arbitrary complex numbers. We give necessary and sufficient conditions for the existence of a solution to ( ) ( {\ast } ) among distributions of compact support, and show that the space of such solutions is always finite dimensional. If F F denotes the Fourier transformation of a self-similar distribution of compact support, let \[ H ( R ) = 1 R n β | x | R | F ( x ) | 2 d x , H(R) = \frac {1}{{{R^{n - \beta }}}}\int _{|x| \leq R} {|F(x){|^2}dx,} \] where β \beta is defined by the equation j = 1 m ρ j β | a j | 2 = 1 \sum \nolimits _{j = 1}^m {\rho _j^{ - \beta }|{a_j}{|^2} = 1} . If ρ j ν j = ρ \rho _j^{{\nu _j}} = \rho for some fixed ρ \rho and ν j {\nu _j} positive integers we say the { ρ j } \{ {\rho _j}\} are exponentially commensurable. In this case we prove (under some additional hypotheses) that H ( R ) H(R) is asymptotic (in a suitable sense) to a bounded function H ~ ( R ) \tilde H(R) that is bounded away from zero and periodic in the sense that H ~ ( ρ R ) = H ~ ( R ) \tilde H(\rho R) = \tilde H(R) for all R > 0 R > 0 . If the { ρ j } \{ {\rho _j}\} are exponentially incommensurable then lim R H ( R ) {\lim _{R \to \infty }}H(R) exists and is nonzero.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference18 articles.

1. W. Feller, An introduction to probability theory and its applications, Vol. 2, 2nd ed., Wiley, New York, 1971.

2. Hardy’s inequality and fractal measures;Hudson, Steve;J. Funct. Anal.,1992

3. Fractals and self-similarity;Hutchinson, John E.;Indiana Univ. Math. J.,1981

4. The packing and covering functions of some self-similar fractals;Lalley, Steven P.;Indiana Univ. Math. J.,1988

5. Fractal measures and mean 𝑝-variations;Lau, Ka-Sing;J. Funct. Anal.,1992

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3