Focal points for a linear differential equation whose coefficients are of constant signs

Author:

Elias Uri

Abstract

The differential equation considered is y ( n ) + Σ p i ( x ) y ( i ) = 0 {y^{(n)}} + \Sigma {{p_i}(x){y^{(i)}}} = 0 , where σ i p i ( x ) 0 , i = 0 , , n 1 , σ i = ± 1 {\sigma _i}{p_i}(x) \geqslant 0,i = 0,\ldots ,n - 1,{\sigma _i} = \pm 1 . The focal point ζ ( a ) \zeta (a) is defined as the least value of s, s > a s > a , such that there exists a nontrivial solution y which satisfies y ( i ) ( a ) = 0 , σ i σ i + 1 > 0 {y^{(i)}}(a) = 0,{\sigma _i}{\sigma _{i + 1}} > 0 and y ( i ) ( s ) = 0 {y^{(i)}}(s) = 0 , σ i σ i + 1 > 0 {\sigma _i}{\sigma _{i + 1}} > 0 . Our method is based on a characterization of ζ ( a ) \zeta (a) by solutions which satisfy σ i y ( i ) > 0 , i = 0 , , n 1 {\sigma _i}{y^{(i)}} > 0,i = 0,\ldots ,n - 1 , on [ a , b ] [a,b] , b > ζ ( a ) b > \zeta (a) . We study the behavior of the function ζ \zeta and the dependence of ζ ( a ) \zeta (a) on p 0 , , p n 1 {p_0},\ldots ,{p_{n - 1}} when at least a certain p i ( x ) {p_i}(x) does not vanish identically near a or near ζ ( a ) \zeta (a) . As an application we prove the existence of an eigenvalue of a related boundary value problem.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference7 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Continuous Problems;Focal Boundary Value Problems for Differential and Difference Equations;1998

2. Abel-Gontscharoff boundary value problems;Mathematical and Computer Modelling;1993-04

3. Abel — Gontscharoff Interpolation;Error Inequalities in Polynomial Interpolation and Their Applications;1993

4. On the right focal point boundary value problems for integro-differential equations;Journal of Mathematical Analysis and Applications;1987-08

5. Iterative methods for solving right focal point boundary value problems;Journal of Computational and Applied Mathematics;1986-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3