Liouvillian first integrals of differential equations

Author:

Singer Michael F.

Abstract

Liouvillian functions are functions that are built up from rational functions using exponentiation, integration, and algebraic functions. We show that if a system of differential equations has a generic solution that satisfies a liouvillian relation, that is, there is a liouvillian function of several variables vanishing on the curve defined by this solution, then the system has a liouvillian first integral, that is a nonconstant liouvillian function that is constant on solution curves in some nonempty open set. We can refine this result in special cases to show that the first integral must be of a very special form. For example, we can show that if the system d x / d z = P ( x , y ) dx/dz = P(x,y) , d y / d z = Q ( x , y ) dy/dz = Q(x,y) has a solution ( x ( z ) , y ( z ) ) (x(z),y(z)) satisfying a liouvillian relation then either x ( z ) x(z) and y ( z ) y(z) are algebraically dependent or the system has a liouvillian first integral of the form F ( x , y ) = R Q d x R P d y F(x,y) = \smallint RQ\,dx - RP\,dy where R = exp ( U d x + V d y ) R = \exp (\smallint U\,dx + V\,dy) and U U and V V rational functions of x x and y y . We can also reprove an old result of Ritt stating that a second order linear differential equation has a nonconstant solution satisfying a liouvillian relation if and only if all of its solutions are liouvillian.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference18 articles.

1. W. E. Boyce and R. C. DiPrima, Elementary differential equations, Third ed., Wiley, New York, 1977.

2. Lecture Notes in Mathematics;Jouanolou, J. P.,1979

3. Publ. Inst. Math. Univ. Nancago, No. 5;Kaplansky, Irving,1957

4. Pure and Applied Mathematics, Vol. 54;Kolchin, E. R.,1973

Cited by 169 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Qualitative study of the Selkov model;Journal of Differential Equations;2024-06

2. Integrable geodesic flows and metrisable second-order ordinary differential equations;Journal of Geometry and Physics;2024-05

3. Darboux theory of integrability on the Clifford n-dimensional torus;Bulletin des Sciences Mathématiques;2024-05

4. Darboux theory of integrability in $$\mathbb {T}^n$$;European Journal of Mathematics;2024-04-05

5. Exact FLRW cosmological solutions via invariants of the symmetry groups;Physica Scripta;2024-04-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3