Let
Φ
\Phi
be a field of characteristic
p
>
0
p > 0
and
m
,
n
1
,
…
,
n
m
m,{n_1}, \ldots ,{n_m}
be integers
≧
1
\geqq 1
. A Lie algebra
W
(
m
:
n
1
,
…
,
n
m
)
W(m:{n_1}, \ldots ,{n_m})
over
Φ
\Phi
is defined. It is shown that if
Φ
\Phi
is algebraically closed then
W
(
m
:
n
1
,
…
,
n
m
)
W(m:{n_1}, \ldots ,{n_m})
is isomorphic to a generalized Witt algebra, that every finite-dimensional generalized Witt algebra over
Φ
\Phi
is isomorphic to some
W
(
m
:
n
1
,
…
,
n
m
)
W(m:{n_1}, \ldots ,{n_m})
, and that
W
(
m
:
n
1
,
…
,
n
m
)
W(m:{n_1}, \ldots ,{n_m})
is isomorphic to
W
(
s
:
r
1
,
…
,
r
s
)
W(s:{r_1}, \ldots ,{r_s})
if and only if
m
=
s
m = s
and
r
i
=
n
σ
(
i
)
{r_i} = {n_{\sigma (i)}}
for
1
≦
i
≦
m
1 \leqq i \leqq m
where
σ
\sigma
is a permutation of
{
1
,
…
,
m
}
\{ 1, \ldots ,m\}
. This gives a complete classification of the finite-dimensional generalized Witt algebras over algebraically closed fields. The automorphism group of
W
(
m
:
n
1
,
…
,
n
m
)
W(m:{n_1}, \ldots ,{n_m})
is determined for
p
>
3
p > 3
.