Maxima and high level excursions of stationary Gaussian processes

Author:

Berman Simeon M.

Abstract

Let X ( t ) , t 0 X(t),t \geqq 0 , be a stationary Gaussian process with mean 0, variance 1 and covariance function r ( t ) r(t) . The sample functions are assumed to be continuous on every interval. Let r ( t ) r(t) be continuous and nonperiodic. Suppose that there exists α , 0 > α 2 \alpha , 0 > \alpha \leqq 2 , and a continuous, increasing function g ( t ) , t 0 g(t),t \geqq 0 , satisfying \[ ( 0.1 ) lim t 0 g ( c t ) g ( t ) = 1 , f o r e v e r y c > 0 , (0.1)\quad \lim \limits _{t \to 0} \frac {{g(ct)}}{{g(t)}} = 1,\quad for\;every\;c > 0, \] such that \[ ( 0.2 ) 1 r ( t ) g ( | t | ) | t | α , t 0. (0.2)\quad 1 - r(t) \sim g(|t|)|t{|^\alpha },\quad t \to 0. \] For u > 0 u > 0 , let v v be defined (in terms of u u ) as the unique solution of \[ ( 0.3 ) u 2 g ( 1 / v ) v α = 1. (0.3)\quad {u^2}g(1/v){v^{ - \alpha }} = 1. \] Let I A {I_A} be the indicator of the event A A ; then \[ 0 T I [ X ( s ) > u ] d s \int _0^T {{I_{[X(s) > u]}}ds} \] represents the time spent above u u by X ( s ) , 0 s T X(s),0 \leqq s \leqq T . It is shown that the conditional distribution of \[ ( 0.4 ) v 0 T I [ X ( s ) > u ] d s , (0.4)\quad v\int _0^T {{I_{[X(s) > u]}}ds,} \] given that it is positive, converges for fixed T T and u u \to \infty to a limiting distribution Ψ α {\Psi _\alpha } , which depends only on α \alpha but not on T T or g g . Let F ( λ ) F(\lambda ) be the spectral distribution function corresponding to r ( t ) r(t) . Let F ( p ) ( λ ) {F^{(p)}}(\lambda ) be the iterated p p -fold convolution of F ( λ ) F(\lambda ) . If, in addition to (0.2), it is assumed that \[ ( 0.5 ) F ( p ) i s a b s o l u t e l y c o n t i n u o u s f o r s o m e p > 0 , (0.5)\quad {F^{(p)}}\;is\;absolutely\;continuous\;for\;some\;p > 0, \] then max ( X ( s ) : 0 s t ) \max (X(s):0 \leqq s \leqq t) , properly normalized, has, for t t \to \infty , the limiting extreme value distribution exp ( e x ) \exp ( - {e^{ - x}}) . If, in addition to (0.2), it is assumed that \[ ( 0.6 ) F ( λ ) i s a b s o l u t e l y c o n t i n u o u s w i t h t h e d e r i v a t i v e f ( λ ) , (0.6)\quad F(\lambda )\;is\; absolutely \;continuous\; with\; the\; derivative\; f(\lambda ), \] and \[ ( 0.7 ) lim h 0 log h | f ( λ + h ) f ( λ ) | d λ = 0 , (0.7)\quad \lim \limits _{h \to 0} \log h\int _{ - \infty }^\infty {|f(\lambda } + h) - f(\lambda )|d\lambda = 0, \] then (0.4) has, for u u \to \infty and T T \to \infty , a limiting distribution whose Laplace-Stieltjes transform is \[ ( 0.8 ) exp [ constant 0 ( e λ ξ 1 ) d Ψ α ( x ) ] , λ > 0. (0.8)\quad \exp [{\text {constant}}\int _0^\infty {} ({e^{ - \lambda \xi }} - 1)d{\Psi _\alpha }(x)],\quad \lambda > 0. \]

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference15 articles.

1. On the number of level crossings by a Gaussian stochastic process. II;Beljaev, Ju. K.;Teor. Verojatnost. i Primenen.,1967

2. Occupation times of stationary Gaussian processes;Berman, Simeon M.;J. Appl. Probability,1970

3. Excursions above high levels for stationary Gaussian processes;Berman, Simeon M.;Pacific J. Math.,1971

4. Asymptotic independence of the numbers of high and low level crossings of stationary Gaussian processes;Berman, Simeon M.;Ann. Math. Statist.,1971

5. A class of limiting distributions of high level excursions of Gaussian processes;Berman, Simeon M.;Z. Wahrscheinlichkeitstheorie und Verw. Gebiete,1972

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bibliography;Sojourns and Extremes of Stochastic Processes;2017-07-12

2. Limit Theorems;Long-Memory Processes;2013

3. Extremes of weighted Brownian Bridges in increasing dimension;Extremes;2012-02-08

4. Valuation of freight transportation contracts under uncertainty;Transportation Research Part E: Logistics and Transportation Review;2011-11

5. Extremes of the standardized Gaussian noise;Stochastic Processes and their Applications;2011-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3