Algorithmic solution of extremal digraph problems

Author:

Brown W. G.,Erdős P.,Simonovits M.

Abstract

For a given family L \mathcal {L} of digraphs, we study the "extremal" digraphs on n n vertices containing no member of L \mathcal {L} , and having the maximum number of arcs, ex ( n , L ) \operatorname {ex} (n,\mathcal {L}) . We resolve conjectures concerning the set { lim n ( ex ( n , L ) / n 2 ) } \{ {\lim _{n \to \infty }}(\operatorname {ex} (n,\mathcal {L})/{n^2})\} as L \mathcal {L} ranges over all possible families, and describe a "finite" algorithm that can determine, for any L \mathcal {L} , all matrices A A for which a sequence { A ( n ) } \{ A(n)\} of "matrix digraphs" is asymptotically extremal ( A ( n ) A(n) contains no member of L \mathcal {L} and has ex ( n , L ) + o ( n 2 ) \operatorname {ex} (n,\mathcal {L}) + o({n^2}) arcs as n n \to \infty .) Résumé. Pour une famille donnée, L \mathcal {L} , de digraphes, on étudie les digraphes "extrémaux" à n n sommets qui ne contiennent aucun membre de L \mathcal {L} , et qui possèdent le nombre maximal d’arêtes, ex ( n , L ) \operatorname {ex} (n,\mathcal {L}) . On résolue des conjectures qui concernent l’ensemble { lim n ( ex ( n , L ) / n 2 ) } \{ {\lim _{n \to \infty }}(\operatorname {ex} (n,\mathcal {L})/{n^2})\} L \mathcal {L} soit une famille quelconque, et on présente un algorithme "fini" qui peut déterminer, pour chaque L \mathcal {L} , toute matrice A A pour laquelle une suite { A ( n ) } \{ A(n)\} de "digraphes matriciels" est extrémale asymptotiquement ( A ( n ) A(n) ne contient aucun membre de L \mathcal {L} et possède ex ( n , L ) + o ( n 2 ) \operatorname {ex} (n,\mathcal {L}) + o({n^2}) arêtes lorsque n n \to \infty .)

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference20 articles.

1. Addison-Wesley Series in Computer Science and Information Processing;Aho, Alfred V.,1975

2. London Mathematical Society Monographs;Bollobás, Béla,1978

3. Extremal problems for directed graphs;Brown, W. G.;J. Combinatorial Theory Ser. B,1973

4. \bysame, Multigraph extremal problems, Colloques Internationaux C.N.R.S. 260: Problèmes combinatoires et théorie des graphes, Proc. Colloq., Orsay, 1976 (Editions C.N.R.S., Paris, 1978). ISBN 2-222-02070-0, 63-66.

5. \bysame, Multigraph extremal problems, preprint, 1975.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Turán problems for mixed graphs;Journal of Combinatorial Theory, Series B;2024-07

2. Turán Problems for Oriented Graphs;Annals of Combinatorics;2024-02-29

3. Extremal digraphs avoiding distinct walks of length 3 with the same endpoints;Discrete Mathematics;2022-10

4. Turán number of 3-free strong digraphs with out-degree restriction;Discrete Applied Mathematics;2022-06

5. Digraphs that contain at most t distinct walks of a given length with the same endpoints;Journal of Combinatorial Optimization;2021-03-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3