On the telescopic homotopy theory of spaces

Author:

Bousfield A.

Abstract

In telescopic homotopy theory, a space or spectrum X X is approximated by a tower of localizations L n f X L^{f}_{n}X , n 0 n\ge 0 , taking account of v n v_{n} -periodic homotopy groups for progressively higher n n . For each n 1 n\ge 1 , we construct a telescopic Kuhn functor Φ n \Phi _{n} carrying a space to a spectrum with the same v n v_{n} -periodic homotopy groups, and we construct a new functor Θ n \Theta _{n} left adjoint to Φ n \Phi _{n} . Using these functors, we show that the n n th stable monocular homotopy category (comprising the n n th fibers of stable telescopic towers) embeds as a retract of the n n th unstable monocular homotopy category in two ways: one giving infinite loop spaces and the other giving “infinite L n f L^{f}_{n} -suspension spaces.” We deduce that Ravenel’s stable telescope conjectures are equivalent to unstable telescope conjectures. In particular, we show that the failure of Ravenel’s n n th stable telescope conjecture implies the existence of highly connected infinite loop spaces with trivial Johnson-Wilson E ( n ) E(n)_{*} -homology but nontrivial v n v_{n} -periodic homotopy groups, showing a fundamental difference between the unstable chromatic and telescopic theories. As a stable chromatic application, we show that each spectrum is K ( n ) K(n) -equivalent to a suspension spectrum. As an unstable chromatic application, we determine the E ( n ) E(n)_{*} -localizations and K ( n ) K(n)_{*} -localizations of infinite loop spaces in terms of E ( n ) E(n)_{*} -localizations of spectra under suitable conditions. We also determine the E ( n ) E(n)_{*} -localizations and K ( n ) K(n)_{*} -localizations of arbitrary Postnikov H H -spaces.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference41 articles.

1. Chicago Lectures in Mathematics;Adams, J. F.,1974

2. Encyclopedia of Mathematics and its Applications;Borceux, Francis,1994

3. Some properties of polynomial sets of type zero;Sheffer, I. M.;Duke Math. J.,1939

4. The localization of spectra with respect to homology;Bousfield, A. K.;Topology,1979

5. [Bou3] \bysame, Cohomological localizations of spaces and spectra, preprint, 1979.

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A variant of a Dwyer–Kan theorem for model categories;Algebraic & Geometric Topology;2024-07-16

2. The localization of orthogonal calculus with respect to homology;Algebraic & Geometric Topology;2024-06-28

3. Purity in chromatically localized algebraic -theory;Journal of the American Mathematical Society;2024-02-01

4. Bordism for the 2-group symmetries of the heterotic and CHL strings;Contemporary Mathematics;2024

5. Unitary calculus: model categories and convergence;Journal of Homotopy and Related Structures;2022-08-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3