Dimension-free quasiconformal distortion in 𝑛-space

Author:

Anderson G. D.,Vamanamurthy M. K.,Vuorinen M.

Abstract

Most distortion theorems for K K -quasiconformal mappings in R n {{\mathbf {R}}^n} , n 2 n \geqslant 2 , depend on both n n and K K in an essential way, with bounds that become infinite as n n tends to \infty . The present authors obtain dimension-free versions of four well-known distortion theorems for quasiconformal mappings—namely, bounds for the linear dilatation, the Schwarz lemma, the Θ \Theta -distortion theorem, and the η \eta -quasisymmetry property of these mappings. They show that the upper estimates they have obtained in each of these four main results remain bounded as n n tends to \infty with K K fixed. The proofs are based on a "dimensioncancellation" property of the function t τ 1 ( τ ( t ) / K ) , t > 0 , K > 0 t \mapsto {\tau ^{ - 1}}(\tau (t)/K),\,t > 0,\,K > 0 , where τ ( t ) \tau (t) is the capacity of a Teichmüller extremal ring in R n {{\mathbf {R}}^n} . The authors also prove a dimension-free distortion theorem for the absolute (cross) ratio under K K -quasiconformal mappings of R ¯ n {\overline {\mathbf {R}} ^n} , from which several other distortion theorems follow as special cases.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference30 articles.

1. Ordway Professorship Lectures in Mathematics;Ahlfors, Lars V.,1981

2. Symmetrization and extremal rings in space;Anderson, G. D.;Ann. Acad. Sci. Fenn. Ser. A I No.,1969

3. \bysame, Extremal rings in 𝑛-space for fixed and varying 𝑛, Ann. Acad. Sci. Fenn. Ser. AI 575 (1974), 1-21.

4. Dependence on dimension of a constant related to the Grötzsch ring;Anderson, Glen D.;Proc. Amer. Math. Soc.,1976

5. Derivatives of the conformal capacity of extremal rings;Anderson, Glen D.;Ann. Acad. Sci. Fenn. Ser. A I Math.,1985

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neargeodesics in John domains in Banach spaces;International Journal of Mathematics;2014-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3